Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency


Zhu, J.M.; Kaeppler, S.M.; Lynch, J.P.


Plant and Soil, Springer Science + Business Media, Volume 270, Issue 1/2, Netherlands, p.299-310 (2005)

Accession Number:


Download Options:

Full Text:

Sorry, publisher does not permit download

External links:

My library:

openurl resolver


Suboptimal phosphorus availability is a primary constraint for terrestrial plant growth and crop productivity. Root hairs are subcellular extensions from the root epidermis that play an important role in the uptake of immobile nutrients such as phosphorus by increasing soil exploration. The objective of this study was to identify quantitative trait loci for root hair length and plasticity in response to phosphorus stress in maize. Using a cigar roll culture system in a controlled environment, root traits including root hair length, tap root length, root thickness, and root biomass were evaluated in 169 recombinant inbred lines derived from a cross between B73 and Mo17. These parents have contrasting adaptation to low phosphorus availability in the field. The parents segregated for the length of individual root hairs under low phosphorus. Average root hair length (RHL) of RI lines ranged from 0.6 to 3.5 mm with an average of 2.0 mm under fertile conditions, and RHL was increased from 0% to 185% under phosphorus stress. Using composite interval mapping with a LOD threshold of 3.27, one QTL was associated with RHL plasticity, three QTL with RHL under high fertility, and one QTL with root hair length under low phosphorus. These QTL accounted for 12.7%, 31.9%, and 9.6% of phenotypic variation, respectively. No QTL were detected for taproot thickness and root biomass. Six QTL were associated with 53.1% of the total variation for seed phosphorus in the population. Root biomass plasticity was significantly correlated with RHL induced by low phosphorus, taproot length plasticity, and seed phosphorus reserves. Our results suggest that genetic variation in root hair length and plasticity may be an appropriate target for marker aided selection to improve the phosphorus efficiency of maize.