Enhancing the Efficiency of Somatic Embryogenesis and Genetic Transformation in *Theobroma cacao* L.

Jishnu Bhatt Guiltian-Maximova Laboratory Public Dissertation Defense December 20, 2024

Theobroma (Greek) – "food of the gods"

Young Carl Linnaeus (1792)

https://s3-us-west-2.amazonaws.com/ntbgmeettheplants/images/600h/1571.jpg

https://www.aoc.gov/sites/default/files/styles/scaled_lg/public/crosssection_of_theobroma_cacao_chocolate_tree.jpg.webp?itok=Q_TweFjv

https://earthlingnature.wordpress.com/wp-content/uploads/2018/05/429px-carolus_linnaeus_by_hendrik_hollander_1853.jpg

unopened immature flower & open mature flower

https://www.jungleblunts.com/wp-content/uploads/2022/01/cacao-tree-1.jpg

cacao pod

zygotic embryos

emerging root

Cacaos' Economic Importance

- UN Food and Agriculture statistics (FAOSTAT) estimates ~5,874,582 million tons of cacao beans (2022)
- Gross production value ~ \$8.33 billion
- Retail market expected to grow to ~\$189.89 billion in 2026

Cacao Diseases

- Cumulative losses of productivity from pests and diseases **20-38% globally**
- Three diseases responsible for ~87% of global annual losses
- Biologically superior varieties are the preferred strategy
- Annual global replanting requirement of ~1 billion plants/year

s/768x512/1317030.jpg

Cacao Propagation Strategies

- Seedlings are most commonly used
- Low labor input
- High % of healthy plantlets
- Variation in traits
- Loss of breeding improvements

Cacao Asexual Propagation Strategies

Grafting

Cuttings

Air Layering

rnWHGoHNV6npxWOiwbCyDSh/2df14055dbfd37facd49f816ea037a018b41e44d.jpg https://www.growables.org/information/TropicalFruit/documents/CacaoCTAHR.pdf https://agronosotros.com/grafting-our-cacao-saplings

Lifecycle of a sexually reproducing organism

Totipotency ~ the ability to give rise to <u>all</u> the different cell-types and tissues to fully regenerate an organism in a permissive environment

Pluripotency ~ the ability to give rise to <u>multiple</u> different cell-types and tissues of an organism in a permissive environment

Lifecycle of a sexually reproducing organism

Differentiation ~ the process by which unspecialized cells transform into specialized cells with defined structures, functions, and roles

Somatic cell ~ any cell of an organism apart from its' reproductive cells

Somatic Embryogenesis

The process of induced totipotency where embryos are formed from somatic cells rather than zygotic germline cells

Kalanchoe sp.

- Occurs in over 500 species of higher plants
- Can be induced *in-vitro*
- Uses genetic & developmental pathways of seed development

Cacao Somatic Embryogenesis Induction

Competent cell ~ capable of de-differentiating towards totipotency

In-vitro recalcitrance \sim when plants fail to induce somatic embryogenesis in tissue culture despite extensive optimization of conditions

Cacao Somatic Embryogenesis Induction

- Induction occurs through stress
- Most tissue culture systems use plant growth regulating hormones like 2,4dichlorophenoxyacetic acid (auxin) & thidiazuron (TDZ) (cytokinin)
- Results in endogenous auxin production
- Expression of totipotency-promoting and embryo-identity genes
- Removal of stress allows for somatic embryo development

Cacao Somatic Embryogenesis (SE)

Callus ~ unorganized mass of cells in various states of differentiation Proembryogenic masses (PEMs) ~ Cluster of proembryogenic cells from which embryos emerge

Propagation via Somatic Embryogenesis

Advantages:

- Highest multiplication ratio for asexual propagation
- Maintain agronomic characteristics of the parent
- Virus and disease-free
- SE-derived plants are just as healthy as seed-derived

Disadvantages:

- Highly skilled labor
- Expensive infrastructure
- Optimization of tissue culture protocol
- Genotype dependent
- Requires mature trees to initiate SE (2-6 years)
- Abnormalities of somatic embryos

Genetic Transformation

The process of altering an organisms' DNA by adding, removing or changing sequences for the purposes of affecting changes within the host cell

https://images.fineartamerica.com/images-medium-large-5/7-agrobacterium-tumefaciens-dennis-kunkel-microscopy.science-photo-library.jpg https://www.shutterstock.com/image-photo/giant-tree-burl-caused-by-600nw-2140647801.jp

Cacao Genetic Transformation

Somatic embryo <u>cotyledons</u> are the only tissues **amenable** to stable *Agrobacterium* transformation and subsequent regeneration

Agrobacterium mediated transformation

cacao SE cotyledon transformed with mScarlet fluorescent gene

Cacao Genetic Transformation

Cacao somatic embryos

SE cotyledon explants *Agro*-mediated transformation

Culture and regenerate SEs

Transgenic somatic embryo expressing EGFP (enhanced green fluorescent protein)

Cacao Genetic Transformation

Cacao Transformation Efficiency

Transformation Recalcitrance ~ Inability to incorporate foreign DNA into the host plants' genome

- Transient ~ The T-DNA is not reaching and expressing within the host cells' nucleus
- Stable ~ T-DNA is not integrating within the hosts' nucleus and regenerating transgenic SEs

 Transgenic embryo regeneration efficiency ~0-4%

Recovery of a transgenic cacao SE

Two Major Bottlenecks

In-vitro recalcitrance:

• Most tissues of cacao trees are not capable of regenerating SEs. This limits all SE work to mature, flowering, trees

Transformation recalcitrance:

• *Agro*-mediated transformation efficiency is insufficient to increase the number of stable transgenics regenerated

Dissertation Chapters Overview

<u>Chapter 2:</u> Ectopic Activation of TcLEC2 Increases Explant Competence for Somatic Embryogenesis

<u>Chapter 3:</u> Binary Vector Effects on *Agrobacterium tumefaciens*-Mediated Cacao Transformation

<u>Chapter 4:</u> Ectopic Expression of Developmental Regulator Genes and Characterization of Cacao Transformation and Somatic Embryogenesis <u>Chapter 2:</u> Ectopic Activation of TcLEC2 Increases Explant Competence for Somatic Embryogenesis

⁽Gulzar *et al.*, 2020)

Cacao Leafy Cotyledon 2 (TcLEC2) Transcription Factor

- Master regulator of somatic embryogenesis
- Expressed early in embryonic development and asexual tissues
- Establishes the ideal cellular environment for zygotic embryo development

(Kulesza *et al.*, 2024)

Cacao Leafy Cotyledon 2 (TcLEC2) Transcription Factor

Figure 6 Overexpression of *TcLEC2* increases tertiary somatic embryogenesis efficiency. **A**. Tertiary *PSU-SCA6* culture on hormone free medium at 4 weeks ACI. **B**. Tertiary stable transgenic E12 Ω ::TcLEC2 culture on hormone free medium at 4 weeks ACI. **C**. Tertiary *PSU-SCA6* culture on hormone free medium 20 weeks after culture initiation. **D**. Tertiary stable transgenic E12 Ω ::TcLEC2 culture on hormone free medium at 20 weeks ACI. **E**. Average number of tertiary embryos produced per explant from *PSU-SCA6* and stable transgenic E12 Ω ::TcLEC2 explants (n = 4, mean ± SE) (Bars = 2 mm).

- Constitutive expression results in cyclic embryogenesis
- Transgenic embryos are unable to develop properly

(Zhang et al., 2014)

(+) DEX = ACTIVATED

TcLEC2-GR +PGR +dex

Scale = 1cm

What other cacao tissues might be amenable to somatic embryogenesis via LEC2 activation?

Pilot Experiment

Two Genotypes: PSU Sca6 (wild-type) & TcLEC2-GR

Whole Flowers

Internodes Petioles Leaf Stage Shoot A-B Apex

LEC₂ Tissues

Developing ~ globular -> torpedo stage

Mature \sim cotyledonary stage

Result:

LEC2 activation allows juvenile somatic tissues to regenerate SEs

Large Scale Experiment – replicated twice

Petals

<u>Two Genotypes:</u> - PSU Sca6 (wild-type) - TcLEC2-GR

<u>Explant Numbers:</u> -5-9 plates/treatment -56-90 explants/treatment

Leaf StageInternodesPetiolesLeaf StageLeaf StageEC-DA-B

<u>Results:</u>

Petals:

- PSU SCA6 & L2-GR regenerated similar numbers of mature SEs (+/- DEX)
- L2GR (+/- DEX) had a significantly higher number of developing SEs

<u>L2GR Internodes (+DEX):</u>

• Regenerated the most SEs

L2GR Petioles (+DEX):

• Tied second best at SE regeneration

<u>L2GR C-D Stage Leaves (+DEX)</u>:

• Tied second best at SE regeneration

L2GR A-B Stage Leaves(+DEX):

• Regenerated the fewest compared to other juvenile somatic tissues

L2GR E Stage Leaves:

• Regenerated no SEs (+/- DEX) treatment

PSU SCA6 juvenile tissues

• Regenerated no SEs

<u>Outliers:</u>

- PSU Sca6 Leaves AB
- L2GR Internodes (-DEX)
- L2GR petioles (-DEX)
- L2GR Leaf Stage C-D (-DEX)

L2GR Leakiness

Developing ~0.60% Mature ~0.30%

Health of L2-GR Explants

- Petals ~ 49%
- C-D leaves ~ 39%
- Petioles $\sim 30\%$
- Internodes $\sim 25\%$
- A-B leaves $\sim 8\%$

Discussion:

- Activation of TcLEC2 in cacao tissues allows internodes, petioles, leaves staged A-D, shoot apices, and whole flowers to regenerate SEs
- Developmental regulating genes such as LEC2 can help overcome *in-vitro* recalcitrance of highly recalcitrant tissues
- Pre-competent/competent cells exist throughout the tree

Future Directions:

- Identification of pre-competent and competent cell-types in cacao
- Transformation of juvenile tissues to recover stable transgenics

<u>Chapter 3:</u> Binary Vector Effects on *Agrobacterium tumefaciens*-Mediated Cacao Transformation

Successful Agrobacterium-mediated Transformation

Host: Cacao (PSU Scavina 6)

Agrobacterium strain: -AGL1 (hyper-virulent)

Binary vector: -pCambia based backbone

Components of a binary vector

T-DNA region

- Defined by left border and right border sequences
- Plant selectable marker
- Gene of interest/payload region
- Multiple cloning site

Backbone region

- Bacterial selectable marker
- *E.coli* origin of replication
- *Agrobacterium* origin of replication

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiW3oWsg5WdPSsbXN1kYhHh3nKjrlGZ6O0V8g0h5hgv1VbKa78 f8PB6gVb3_1PTZOuwXLn_T0BmZWjShbhllsQDCTRIsFBCr0gjepD2_y1YFI8DjAokozfyYA8d0LA0XBxhKF3Xa9a1W8/?imgmax=800

What binary vector is used for cacao transformation?

pGH00.0126 ('p126')

Backbone – pCambia line *E. coli* ori – ColE1 *Agrobacterium* ori – pVS1 Backbone ~6.2 kbp Total size ~ 15.6 kbp

Two small binary vectors identified from the literature

Vector	Backbone	Origin of Replication	Backbone Size	
pGH00.0126	pCAMBIA	pVS1+ ColE1	6.2 kb	ʻp126'
pMAP EGFP	pLX	WKS1-pUC19	4.3 kb	(Andreou <i>et al.</i> , 2021)
pLSU-1 EGFP	pLSU	Truncated pVS1+ ColE1	4.6 kb	(Lee et al., 2011)

Can changing vector backbone influence *Agrobacterium*-mediated transformation efficiency?

Clone the EGFP cassette from the 'p126' vector and insert it into the two empty small binary vectors

Detached Cacao Leaf Transient Expression Assay

- Insert binary vectors with EGFP cassettes into *Agrobacterium*
- Infiltrate 11 leaf sections/vector
- Allow infection for 48 hours
- Photograph leaves under a fluorescence macro-scope
- Use ImageJ (software) to quantify fluorescence

Result:

pLSU normalized fluorescence was ~18% higher than pCambia (p126) ~20% higher than pMAP

*** p-value <0.0001, one-way ANOVA

What does normalized fluorescence measure?

- Indirect measurement of the number of EGFP protein molecules expressed in the cacao leaf
- Transient expression of T-DNA molecules
- ~18% more T-DNA molecules from *Agro*mediated transformation of the pLSU vector entered the nucleus of cacao leaf cells and were transcribed and tranlated

Analyzing p126 T-DNA Region

- 47.8% of sequences leftover/non-functional/superfluous
- NPTII mutation (Yenofsky *et al.*, 1990)
- Very few unique restriction sites
- Redundant genetic parts (promoters, terminators)

T-DNA region design criteria

Required cassettes:

- Reporter gene
- Plant selectable marker
- Easy 'drop-in' multiple cloning site

Rules:

- 1. No redundant genetic parts
- 2. No superfluous DNA
- 3. Every genetic component flanked by a unique restriction site
- 4. Restriction enzymes must be of the highest efficiency available

1) No redundant genetic parts

- 1) **Reporter cassette:** <u>E12 35S Prom : EGFP/reporter : 35S Term</u>
- Functions well, being tested in cacao for ~ 2 decades
- 2) Plant selection cassette: <u>Nos Prom : NPTII : Nos Term</u>
- Agrobacterium promoter and terminator used since 1985
- Tested in a wide variety of plant species
- 3) 'Drop-in' cassette
- MAS Prom : (Drop-in site) : AtFAD2 Term
- Promoter and terminator pair functions well in *Arabidopsis thaliana*
- Golden-gate cloning 'drop-in' site.

2) No superfluous DNA

NCBI BLAST every genetic piece & identify minimal correct sequence

3) Every genetic component flanked by a unique restriction site

4) Restriction enzymes must be of the highest efficiency available

Enzyme		Sequence	Supplied NEBuffer	% Act	ivity in	NEBuf	fer	Heat	Incu. Temp	Dilue	Dam	Dcm	CpG	nit	Notes
			HE BUILDI	r1.1	r2.1	r3.1	rCutSma	maor	rompi	_					
Aatli	Ril 🕜 CpG	GACGT/C	rCutSmart Buffer	<10	50^	50	100	80°C	37°C	В	•		•	λDNA	
Acc65I	RX 🕜 dem CpG	G/GTACC	NEBuffer™ r3.1	10	75*	100	25	65°C	37°C	A	•	ca scol	ca scol	pBC4 DNA	
Accl	R?? 🕜 CpG	GT/MKAC	rCutSmart™ Buffer	50	50	10	100	80°C	37°C	A	•	٠	in ol	λDNA	
Acil	R:: 🕜 CpG	CCGC(-3/-1)	rCutSmart™ Buffer	<10	25	100	100	65°C	37°C	A	•	•	•	λDNA	
Acli	RX 🕜 CpG	AA/CGTT	rCutSmart™ Buffer	<10	<10	<10	100	No	37°C	В	•	•	•	λDNA	
Acul	R: 0	CTGAAG(16/14)	rCutSmart™ Buffer	50	100	50	100	65°C	37°C	В	•	•	•	λDNA	1, b, d
Afel	RX CpG	AGC/GCT	rCutSmart™ Buffer	25	100	25	100	65°C	37°C	В	٠	•	•	pXba DNA	
Afili	R* 0	C/TTAAG	rCutSmart™ Buffer	50	100	10	100	65°C	37°C	A	•	•	•	ΦX174 RF I DNA	
Afilli	R:: 0	A/CRYGT	NEBuffer™ r3.1	10	50	100	50	80°C	37°C	В	•		•	λDNA	
Agel-HF®	R \\ @ <i>C</i> CpG	A/CCGGT	rCutSmart™ Buffer	100	50	10	100	65°C	37°C	A	•	•	•	λDNA	
Ahdi	RX 🕐 CpG	GACNNN/NNGTC	rCutSmart™ Buffer	25	25	10	100	65°C	37°C	A	•	•	⊘ scal	λDNA	a
Alel-v2	R \\ <i>e</i> CpG	CACNN/NNGTG	rCutSmart™ Buffer	<10	<10	<10	100	65°C	37°C	В	•	•	♦ ol	λDNA	
Alul	RX @	AG/CT	rCutSmart™ Buffer	25	100	50	100	80°C	37°C	В	•	٠	٠	λDNA	b
Alwl	RX dam	GGATC(4/5)	rCutSmart™ Buffer	50	50	10	100	No	37°C	A	•	•	•	λ DNA (dam-)	1, b, d
AlwNI	RX 🥝 dom	CAGNNN/CTG	rCutSmart™ Buffer	10	100	50	100	80°C	37°C	A	•	n ol		λDNA	
Apal	RX 🕜 dem CpG	GGGCC/C	rCutSmart™ Buffer	25	25	<10	100	65°C	37°C	A	•	ci ol	c ol	pXba DNA	

210 Restriction Enzymes on NEB

- Not present in 9 genetic pieces
- Activity % in rCutsmart must be 100%
- Incubation temperature at 37C
- No Methylation sensitivity
- Low minimal star activity

L	Legend							
	•		Not Sensitive					
•			Blocked					
미			Blocked by Overlapping					
Scol			Blocked by Some Combinations of Overlapping					
	•	Impair	Impaired					
	Qol	Impaired by Overlapping						
	♦scol	Impaired by Some Combinations of Overlapping						

The immediate upstream region of the 5'-UTR from the AUG start codon has a pronounced effect on the translational efficiency in *Arabidopsis thaliana*

Younghyun Kim¹, Goeun Lee², Eunhyun Jeon¹, Eun ju Sohn³, Yongjik Lee³, Hyangju Kang¹, Dong wook Lee³, Dae Heon Kim¹ and Inhwan Hwang^{1,2,3,*}

systems (45). In fact, in plants, the A residue at positions -1 to -4 is most favourable in the translational efficiency

- "AAAAAAA(A/C)A<u>AUG</u>GCU for Dicots (derived from 3643 genes)"
- "AAAAAA<u>AUG</u> and GCCGCC<u>AUG</u> are the most and the second most overrepresented patterns"
- "We then found that such mixed sequences (e.g. GAAACCAUG or ACAGACAUG) are significantly suppressed in genes (P < 0.01)"

Addition of efficient kozak sequences in front of each gene

Binary vector with:

- 1. No redundant genetic parts
- 2. No superfluous DNA
- 3. Every genetic component flanked by a unique restriction site
- 4. Restriction enzymes must be of the highest efficiency available
- 5. Higher translational efficiency

3 cassettes within T-DNA region Only ~8.2kbp! Can the binary vector influence stable transformation efficiency?

Cacao Stable Transformation Experiments

ʻp1101' mScarlet Standard transformation experiment

~120 LEC2-GR secondary somatic embryo cotyledons

Cultured 24 weeks

Transient expression 'spike' stabilizes after 6 days

<u>Metrics collected:</u> 1) Stable normalized fluorescence 2) # Recovered stable transgenic SEs

(Fister et al., 2016)

Tissues Imaged at 6 days ACI

Each explant manually traced

Explant Area

Fluorescence Area

Measurements taken for transformed tissue (Area ,IntDen,etc.)

Threshold value set by p1216 EV Control Method = YEN, Brightness minimum = #32

What % area of explants was transformed?

Area of tissue transformed

x 100

Total Area of Explant

% Area of Explants Transformed

<u>Average Area of Explant Transformed:</u> p1102 ~6.99% of explant transformed p126 ~3.35% of explant transformed

ANOVA, *Alpha* = 0.05 Accept null hypothesis - p1102 and p126 The two means not significantly different

There is no significant difference in the area of tissues transformed due to binary vector

Stable Normalized Fluorescence

ANOVA, *Alpha* = 0.05 **Reject null hypothesis** - p1102 and p126 The two means are significantly different

p1102 ~3.49-fold greater fluorescence compared to p126

More EGFP molecules are being translated from p1102-transformed cells

- More cells are being transformed
- More cells are integrating the T-DNA
- More T-DNA copies are being integrated
- Higher translational efficiency

Does increased stable transformation increase the # of stable transgenics?

No increase in the efficiency % for recovering stable transgenics

p1102 ~ 1/75 = 1.3% p126 ~ no transgenic SEs

 $p1101 \sim 1/125 = 0.08\%$

Scale bars represent 1mm

Discussion:

- Binary vector backbone alone improved transient transformation efficiency by ~18% compared to a pCambia based binary vector backbone
- A T-DNA region was designed and constructed to maximize ease of operability in molecular cloning and stable plant transformation work
- Stable transformation of cacao cotyledons was improved by ~3.49-fold using the newly designed T-DNA region within the pLSU-based vector
- Recovery of stable transgenic cacao SEs was not improved

Future Directions:

- Test in additional plant species and tissue types
- Systematically determine the source of increased T-DNA transfer

<u>Chapter 4:</u> Ectopic Expression of Developmental Regulator Genes and Characterization of Cacao Transformation and Somatic Embryogenesis

Positive Selection Strategy

~express DRG~

⁽Gulzar *et al.*, 2020)

Gene Name	Function	Expression Profile	Ectopic Expression	References	
Somatic Embryogenesis Receptor-like Kinase 1 (SERK1)	Auxin perception and biosynthesis induction. Expression of downstream SE-related homeobox genes.	trongly in globular somatic embryos of icao and embryogenic clusters. Globular zygotic embryos. Apical meristem. Floral tissues. Embryonic tissue formation from non-embryonic cells. 3-to- 4-fold increase in SE forming calli in A. thaliana.		(Hecht, Vielle-Calzada, Hartog, Ed D. L. Schmidt, et al., 2001; de Oliveira Santos et al., 2005; Hu, Xiong and Yang, 2005; Garcia et al., 2019b, 2019a)	
Plethora 5 / Aintegumenta 5/ Embryomaker (PLT5)	Confers embryonic identity to cells. Suppression of cell differentiation. Maintenance of stem cells in roots.	Strongly in developing embryos. Root apical meristem. During wounding and callus formation.	Increased embryogenic calli formation by 3 -to 4-fold. SE regeneration on A. thaliana cotyledons.	(Tsuwamoto, Yokoi and Takahata, 2010; Ikeuchi et al., 2017; Radhakrishnan et al., 2020; Kerstens et al., 2022; Lian et al., 2022; Luo et al., 2023)	
Wound Inducing Dedifferentiation 1 (WIND1)	Cell reprogramming towards pluri/toti-potency. Promotes cytokinin signaling and shoot formation.	Expressed throughout vegetative tissues. Induced strongly at wound sites especially in margins in de-differentiating cells.	Hormone-free callus growth and somatic embryo regeneration. Shoot formation.	(Iwase, Ohme-Takagi and Sugimoto, 2011, p. 201; Iwase et al., 2015b, 2021; Lup et al., 2016)	
Wuschel (WUS)	Promotes stem cell proliferation. Activator in floral patterning. Activates cytokinin signaling.	Small number of cells in the lower part of the central zone of the shoot and floral apical meristem.	Increased SEs regenerated from embryogenic calli. Hormone- free induction of SEs in multiple species.	(Klaus F. X. Mayer et al., 1998; Zuo et al., 2002b; Rashid, Yamaji and Kyo, 2007; Arroyo- Herrera et al., 2008; Bouchabké-Coussa et al., 2013)	
Wuschel-related homeobox 9 (WOX9)	Establish embryo apical-basal polarity. Establish meristematic tissue. Promote cell proliferation.	Early SE in pro-embryogenic structures. Two-cell stage of zygotic embryogenesis. Dividing cells. Basal region of meristems.	Stimulates development of SEs. Callus formation. Stimulates regeneration.	(Haecker et al., 2004; van der Graaff, Laux and Stefan A Rensing, 2009; Fambrini, Usai and Pugliesi, 2022; Krasnoperova et al., 2023; Long et al., 2023)	
Cacao ortholog identification

- Alignments to functionally identified gene from Arabidopsis thaliana
- Phylogenetic tree
- Gene expression profile from *Arabidopsis* and cacao atlases

TcSERK1

2015). Reads were filtered so that only unir

Cacao Development eFP Browser at bar.utoronto.ca in male developing mature 20 mar P premetato Racol bad T mm permitting street street seadir share siam 1 12 ott ortotropic anilary bud Young YA SA

(Kulesza et al., 2024)

(Klepikova et al., 2016)

XVE β-Estradiol Inducible System

(-) β Estradiol

XVE System Inserted into new vector

'pXVE-EGFP'

EGFP under the control of XVE-inducible system

Functionally testing the XVE-system: Tobacco *Agro*-mediated Transient Expression Assay

β-Estradiol concentrations: (0μ M, 5μ M, 10μ M, 50μ M, 100μ M)

Vectors Tested: pXVE-EGFP, p1102 (constitutive positive control), p1216 (empty vector control)

Infiltrated leaf

3 plants infiltrated / treatment

Imaging after 72 hours


```
Expression saturates at \sim 5\mu M
```

Mild increase in mean fluorescence at 100µM

0μM ~ p1216 empty vector 'Non-Leaky'

Expression saturates at ~5µM

Cacao Secondary SE Cotyledon Transformation Experiment

Vector being transformed:

Five XVE-DRG Constructs p1101 (control vector) p1216 (fluorescence normalization)

-7 replicate plates (10 expl/plate)
-6 replicate plates (10 expl/plate)
- 3 replicate plates (10 expl/plate)

Timeline:

Measurements Taken

- Brightfield and fluorescence image taken of every explant (~ 400)
- 7 timepoints over 3 months

ImageJ:

- Explant area
- Explant normalized fluorescence

Metrics calculated:

- Normalized fluorescence
- % Explant transformed (coverage)
- Total Growth of tissue
- Tertiary SEs regenerated

No statistical difference in # of TSEs regenerated

No increase in # transgenic TSEs regenerated

Tissues grow \sim 4.4% /week until the geneticin selection concentration of 150mg/L

Fluorescence coverage averages $\sim 9.5\%$ of total explant area

Fluorescence expression begins declining after 28 days

Slight positive monotonic relationship between the initial size of an explant and its' normalized fluorescence Low positive monotonic relationship between explant size & its' transformation coverage

Positive monotonic relationship between transformation coverage & an explants' total growth

Higher transformation coverage = more cells transformed with selectable marker resistance gene

Positive monotonic relationship between normalized fluorescence & an explants' total growth

Higher expression of T-DNA = more molecules of selectable marker resistance protein

Selection cassette functioning

Transformation coverage, normalized fluorescence, total growth have no impact on the number of TSEs regenerated

Discussion:

- 5 developmental regulator genes were bioinformatically identified, and cloned into an improved stable transformation vector containing an XVE inducible system
- The XVE-EGFP construct was functionally tested and deemed 'non-leaky' in a tobacco leaf transient expression assay
- A DRG pulse 1-month ACI was insufficient to affect regeneration of TSEs and transgenic TSEs in a cacao stable transformation experiment
- Correlating transformation coverage/normalized fluorescence against tissue growth provides an indication that the NPTII resistance cassette is functioning
- An upper threshold of genetic in selection was identified to be $150 \rm mg/L$ for stable cacao cotyled on transformation
- Explant size has no impact on its transformation coverage
- Further optimization to the transformation and regeneration are needed to improve the regeneration of transgenic SEs

Future Directions:

- Further studies to determine to test the functionality of XVE-DRG constructs
- Optimization of DRG expression times for positive selection
- Combinations of ectopic expression of DRGs for positive selection

Acknowledgements:

Guiltinan Maximova Lab:

Dr. Mark Guiltinan Dr. Siela Maximova Dr. Benjamin Knollenberg Dr. Francisco Burns Dr. Patrick Thomas Dr. Zachary Dashner Evelyn Kulesza

Dr. Noah Winters Lena Shaeffer Halena Ross Trevor Bowes Cooper Plunkert Emilio Ciervo Angelena Minardi

Committee members

Dr. Siela Maximova

Dr. Mark Guiltinan

Dr. Teh-Hui Kao

Dr. Howard Salis

<u>Plant Biology Students</u> Plant Biology Cohort Dr. Linhan Sun Dr. Benjamin Knollenberg Dr. Chris Benson Dr. Brendon Juengst Jeremy Held

<u>Funding Sources</u>

