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Supplementary Note 
 

 

 

Origin of the Criollo genotype B97-61/B2 subjected to sequencing and 

requirement for cocoa bean fermentation to generate chocolate quality 

precursors 

 

Origin of the Criollo genotype B97-61/B2 subjected to sequencing 

An expedition was undertaken in 1994 to collect ancient Criollo material in the Maya 

mountains from Belize
1
. This material is now conserved in the International Cocoa Genbank 

(ICG, Trinidad) and was recently characterized by Motilal et al
2
. These authors assessed the 

relationships of these Criollo germplasms with other cocoa accessions and determined their 

putative ancestral contribution to the Trinitario hybrid group. One of these Belizean Criollo 

genotypes (B97-61/B2) was chosen for the sequencing of its genome. Cocoa clones are 

generally self-incompatible and highly heterozygous. Criollo genotypes are self-compatible 

and the B97-61/B2 clone is highly homozygous, facilitating the genome assembly. Its 

homozygosity level was first estimated at 93% by genotyping with 130 microsatellite markers 

and at 99.9% by genotyping with 795 single-nucleotide polymorphisms (SNPs) using the 

Illumina Golden Gate system. 

 

Requirement for cocoa bean fermentation to generate chocolate qualities 

Fermentation of the fresh cocoa beans that are surrounded by a pectinaceous pulp is an 

important step in producing quality chocolate. This is a natural and complex process mediated 

by a large number of fungi and bacteria, which are mechanically inoculated onto the pods 

when they are cut and handled during harvest. The microorganism population composition 

varies during the progression of the fermentation
3
. The time and duration of fermentation 

depend on the type of cocoa and the region where it is grown, but involves the stacking of 

cocoa beans in a pile or a box, with successive turning of the pile or the box during three to 

seven days. Early in the process, the sugars are converted to ethanol and lactic acid due to the 

action of yeast and lactic acid bacteria; later, ethanol is oxidized to acetic acid by acetic acid 

bacteria.  

This fermentation process is accompanied by changes in pH and the rise of the temperature of 

the stack
4
. The fermentation products permeate the cotyledons, killing the embryo and 

producing biochemical reactions that induce changes both in the structure of the seed at the 

subcellular level, and in the metabolites present in the beans. The changes influence the aroma 

and develop the aroma precursors in the fermented seeds
5
. Besides theobromine and caffeine, 

the flavan-3-ols epicatechin, catechin, procyanidin B-2, procyanidin B-5, procyanidin C-1, 

[epicatechin-(4β-8)]3-epicatechin, and [epicatechin- (4β-8)]4-epicatechin are among the key 

compounds contributing to the bitter taste as well as the astringent mouth feel imparted upon 

consumption of roasted cocoa
6
. A complexity of aromatic terpene and lipid metabolites also 

contribute greatly to the flavor of cocoa. In addition, there is a strong influence of both the 

environment and the genetic origins of cocoa beans on flavor development. 
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High molecular weight DNA preparation 

High molecular weight DNA was prepared following isolation of nuclei prepared from cocoa 

leaves of B97-61/B2 according to the following protocols: 

 

Isolation of cell nuclei on cocoa leaves 

Isolation of nuclei was carried out as previously described
7
 with the following exceptions: (1) 

the amount of starting tissue was lowered to 0.5 g / 10 mL NIBM buffer to avoid clogging 

during the filtration steps; (2) the steps of filtration with Miracloth (CALBIOCHEM®) were 

replaced by five successive filtrations with nylon filters (SEFAR NITEX®) with decreasing 

mesh diameters: 250 µM, 100 µM, 50 µM and two times 11 µM; and (3) to reduce organelle 

contamination in the nuclei preparations, nuclei isolation buffer containing 0.5 % TritonX-

100 was used during the nuclei washing steps
8
.  

 

The quality of extraction was monitored by epifluorescence microscopy by assessing the 

number of nuclei (blue) compared to the chloroplasts (red) and cellular debris (green). A 

mixture of 10 µL of nuclei solution and 10 µL 4',6-diamidino-2-phenylindole (DAPI) 1.5 

µg/mL was prepared and placed on a glass slide layered with coverslip. The slides were then 

examined with a Leica DMRAX2 fluorescence microscope and the images of blue, red and 

green fluorescence were acquired separately with a cooled high resolution black and white 

CCD camera. The camera was interfaced to a PC running the Velocity® software (Perkin 

Elmer). 

 

Isolation of nuclear DNA 

The extraction of nuclear DNA followed a protocol using a MATAB buffer already described 

for isolation of genomic DNA
9
. The only changes were on the first and last steps: (1) there 

was no crushing of tissue, the starting material was 500 µL of nuclei solution for 2 mL of 

extraction buffer per tube; (2) DNA was resuspended with 300 µL of TE (10 mM Tris-HCl 

and 1 mM EDTA, pH 8.0). 

 

Purification of nuclear DNA 

DNA purification followed the protocol from the Nucleobond® PC 20 kit (Macherey-Nagel) 

with the following modifications: the culture and lysis of cells was replaced by a crude DNA 

solution. To adjust the salt concentrations and pH, a 1 mL mixture of 200 µL of crude DNA 

(20 µg DNA maximum), 450 µL of water and 350 µL S3 buffer + RNAse (buffer kit) was 

prepared. This solution was homogenized on an oscillating table for a minimum of 1 hour. 

This DNA preparation was then shared among the several collaborating laboratories involved 

in these sequencing activities: Genoscope (France), The Pennsylvania State University (USA) 

and Cold Spring Harbor Laboratory (USA). 

 

Construction of BAC libraries 

Two T. cacao BAC libraries were constructed at the Arizona Genomic Institute following 

established methods
7
 from high molecular weight nuclear DNA using modifications recently 

described for Oryza sativa
8
. Young leaves from an adult plant of T. cacao, variety Criollo 

B97 61/B-2, were provided by the Cocoa Research Unit at The University of the West Indies, 
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Trinidad. Nuclei were isolated and collected in agarose plugs. DNA digestions were 

performed with varying amounts of HindIII or EcoRI to identify the appropriate partial 

digestion conditions for selection of large size restriction fragments followed by ligation to 

pAGIBAC1 vector (a modified pIndigoBAC536Blue with an additional SwaI site
8
. Ligation 

products were transformed into DH10B T1 phage-resistant Escherichia coli cells (Invitrogen, 

Carlsbad, CA) and plated on LB agar that contained chloramphenicol (12.5 μg mL
-1

), X-gal 

(20 mg mL
-1

) and IPTG (0.1 M). Clones were robotically transferred to barcoded 384-well 

plates containing LB freezing medium. After incubation for 18 h, plates were backfilled to 

replace blank wells, replicated and frozen at -80°C. The HindIII library was named TC_CBa 

and the EcoRI library was named TC_CBb. Both libraries are available to the public from the 

Arizona Genomics Institute Resource Center
10

. 

 

Characteristics, quality assessment and estimated genome coverage of the two BAC libraries 

were determined and are summarized in Supplementary Table 1. A representative subset of 

BAC clones from each library was assembled to allow confident determinations of % 

chloroplast clones (which are a major contamination concern), % non-insert clones and the 

average insert size. To estimate average insert sizes, 5 μL aliquots of subset BAC plasmid 

DNA were digested with 5 U of NotI enzyme for 3 hrs at 37°C. The digestion products were 

separated by pulsed-field gel electrophoresis (CHEF-DRIII system, Bio-Rad) in a 1% agarose 

gel in 0.5x TBE buffer. Electrophoresis was carried out for 16 hours at 14°C with an initial 

switch time of 5 sec, a final switch time of 15 sec, in a voltage gradient of 6V cm
-1

. The 

observed cloned inserts were compared to those of the MidRange I PFG Marker (New 

England Biolabs) (Supplementary Fig 1). The average insert size of BAC clones from each 

library was determined to be: TC_CBa 135 kb; TC_CBb 137 kb (Supplementary Fig 2). The 

% non-insert containing clones was determined by the number of clones observed that 

showed a vector band without an insert band in the PFGE display. No empty clones were 

observed in either library (Supplementary Fig 1). 

 

The % chloroplast content was determined from the number of clone end sequences that 

displayed high confidence BLAST similarities to the Arabidopsis thaliana or Oryza sativa 

chloroplast genomic sequences. Plasmid DNA (5 μL) was reacted with vector sequencing 

primers, T7 and BES_HR primer (CAC TCA TTA GGC ACC CCA), BigDye terminator V.3, 

dNTPs, and sequencing buffer in a total volume of 12 μL followed by 150 cycles of PCR (10 

sec at 95C, 5 sec at 55°C, and 2.5 min at 60°C)
11

. After reaction cleanup (Cleanseq, 

Agencourt), reactions were separated on a 3730xl ABI DNA analyzer. Sequences were base 

called using the program Phred
12

. Following BLAST analysis, no chloroplast sequences were 

found in either library. 

 

The estimated genome coverage of each BAC library, based upon the current genome size of 

430 Mbp for T. cacao B97-61/B2 genotype, and the average BAC insert sizes that we 

determined, were 5.14x for TC_CBa and 8.04x for TC_CBb (Supplementary Table 1). 

 

Genomic sequencing and assembly 

Genome sequencing 

The genome was sequenced using a Whole Genome Shotgun strategy. All data were 

generated using Next generation sequencers (Roche/454 GSFLX and Illumina GAIIx), except 

for sequences of BAC ends that were produced by paired-end sequencing of cloned inserts 

using Sanger technology on ABI3730xl sequencers (Supplementary Table 2).  
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Genome assembly 

Sanger and 454 reads were assembled with Newbler version 2.3. From the initial 26,519,827 

reads 80,65% (21,387,691) were assembled. We obtained 25,912 contigs that were linked into 

4,792 scaffolds. The contig N50 was 19.8 kb, and the scaffold N50 was 473.8 kb 

(Supplementary Table 4). The cumulative scaffold size was 326.9 Mb, about 24% smaller 

than the estimated genome size of 430 Mb. The T. cacao cDNA unigene resources (see 

below) were aligned with the assembly using the Blat
13

 algorithm with default parameters and 

only the best match was kept for each unigene. The high coverage of the genome was 

confirmed by the alignment and the assembly contains 97.8% of the 38,737 cocoa unigenes. 

 

Automatic error corrections with Solexa/Illumina reads 

One way to improve the 454 assembly is to complement it with another type of data with a 

different bias in error type, as described previously
14

. Short-read sequences were aligned on 

the cocoa genome assembly using the SOAP
15

 software (with a seed size of 12 bps and a 

maximum gap size allowed of 3 bp per read). Only uniquely mapped reads were retained. 

Each difference was then considered and kept only if it met the following three criteria: (1) an 

error was not located in the first 5 bp or the last 5 bp, (2) the quality of the considered bases, 

the previous and the next one were above 20, and (3) the remaining sequences (before and 

after) around the error were not homopolymers (to avoid misalignment at boundaries). In the 

next stage, pile-up errors located at the same position were identified, particularly errors that 

occurred inside homopolymers (since two reads that tag the same error can report different 

positions). Finally, each detected error was corrected if at least three reads detected the given 

error and 70% of the reads located at that position agreed. 

 

Since we only allow reads uniquely mapped and reads mapped with a maximum of two 

mismatches and three indels, several regions were devoid of Illumina tags. In a first step, one 

or several errors were corrected, and during subsequent iterations of the strategy, regions that 

were devoid of Illumina reads were also covered. We therefore decided to iterate the previous 

strategy during several cycles until no new errors were found. Four cycles were required (the 

first
 
cycle corrected 45,061 errors, the second 4,310, the third 1,044 errors and the fourth, 299 

errors). 

 

Genome size evaluations 

 
The genome size of the sequenced cocoa clone, B97-61/B2, was estimated by flow cytometry. 

In order to check a potential relationship between genome size and transposable elements, the 

genome size was also estimated for a panel of cocoa genotypes from various genetic origins, 

and for representatives of related wild species from the same genus, Theobroma, or from a 

closely related genus, Herrania. (Supplementary Table 3) 

 

Estimation of nuclear DNA content by flow cytometry 

The total DNA amount was assessed by flow cytometry according to Marie and Brown
16

. 

Lycopersicon esculentum cv. Roma (2C = 1.99 pg, 40.0% GC) and Petunia hybrida cv. PxPc6 

(2C = 2.85 pg, 41.0% GC) were used as internal standards. Leaves of studied species (~2 cm²) 

and one internal standard (~0.5 cm²) were chopped with a razor blade in a Petri dish with 800 
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µL of cold Galbraith nuclear isolation buffer
17

 supplemented with 10 mM sodium 

metabisulfite, 1% polyvinylpyrrolidone 10,000 and 5 µg/mL RNAse. The suspension was 

passed through a 48 µm mesh nylon filter. The nuclei were stained with 50 µg/mL propidium 

iodide, a DNA-intercalating fluorochrome. 

 

DNA content of 5000-10,000 stained nuclei was determined for each sample using a 

CyFlow® SL3 flow cytometer (Partec, Sainte Geneviève des Bois, France) with a 532 nm 

green solid state laser (100 mW). Using forward- and side-scatter to gate nuclei, fluorescence 

emission of propidium iodide was collected through a 590 nm long pass filter. The nuclear 

DNA value was calculated using the linear relationship between the fluorescent signals from 

the G0-G1 peaks of the unknown specimen and the known internal standard. The 

supplementary compounds in the buffer avoid interference from browning or tanning: only in 

the case of T. grandiflora was it necessary to make repeat preparations to obtain stable 

preparations. A further indicator of reliability was the observed linearity (2.00) between 2C 

and 4C nuclei of the internal standards. L. esculentum was a satisfactory internal standard in 

all cases. The monoploid C-value, 1C, (according to Greilhuber et al.
18

), was calculated and 

expressed in Mbp using the conversion factor 1 pg DNA = 978 Mbp
19

. Means were analyzed 

with a two-way T-test and grouped according to Bonferroni. 

 

Genome size variations among T. cacao genotypes, Theobroma species and the closely 

related genus Herrania 

Significant differences appear among these accessions of T. cacao (Supplementary Table 3). 

The B97-61/B2 genotype being sequenced has 2C = 2x = 0.88 pg, a haploid genome of 430 

Mbp. The 2C values of the T. cacao accessions ranged from 0.84 pg to 1.01 pg. One species, 

T. microcarpa, within the genus has clearly a smaller genome (2C = 0.73 pg). Two have 

relatively large genomes at the top end of the range, T. speciosa and T. grandiflora (both 2C = 

1.02 pg). The related Herrania spp. cover a similar range of genome sizes (2C = 0.69–1.05 

pg). 

 

Anchoring the assembly on the high-density genetic map 

 
Maps of two progenies were used to establish a consensus map suitable for anchoring the 

assembly: 

• A F1 progeny of 256 individuals, located at the Centre National de Recherche Agronomique 

(CNRA, Divo, Ivory Coast) which resulted from the cross of 2 heterozygous genotypes: 

UPA402, an Upper Amazon Forastero from Peru, and UF676, a Trinitario (hybrid between 

Forastero and Criollo) selected in Costa Rica. This progeny was used previously to establish 

the reference cocoa map, on which all available markers are progressively mapped
9,20-22

. The 

last map established included 600 codominant SSR and RFLP markers. 

• A F2 progeny of 136 individuals, located at Comissão Executiva do Plano da Lavoura 

Cacaueira (CEPLAC, Itabuna, Brazil), recently produced from a cross between 2 

heterozygous parents: ICS1, a Trinitario selected in Trinidad, and Scavina6, an Upper 

Amazon Forastero. 

New simple sequence repeat (SSR) and SNP markers were mapped in these 2 progenies, and 

a consensus map including 1,259 markers was established
23

.  

 

We used the stand alone Blat software
13

 to align markers of the genetic map against the 

scaffolds. Only uniquely aligned markers with a cutoff of 80% identity were retained. We 
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used the mapped markers to anchor and orientate the scaffolds along the T. cacao 

pseudomolecules. Among the 1259 markers, 1192 (94.3%) have a unique Blat hit in the 

scaffolds using a decreasing 90% to 80% identity threshold. The overview of the assembly 

anchoring on the genetic map is reported in Supplementary Table 5 and Supplementary 

Figure 3 for each cocoa linkage group. 

 

Transposable elements 

TE annotation 

De novo identification of Long terminal repeat (LTR) retrotransposons followed a three-step 

approach. The first step was the identification of candidates integrating the results of 

LTR_finder
24

, LTRharvest
25

, and in-house software that searches for reverse transcriptase 

signatures and LTRs. The second step consisted of manual curation of the candidates, keeping 

only one reference element per family. The last step was the annotation of all retrotransposons 

using an in-house software based on BLASTN. 

 

Class II elements were detected through BLASTX against Repbase
26

 proteins. These anchors 

were used to search for transposase occurrences in the scaffolds and they were later extended 

to include the inverted repeats. Furthermore, miniature inverted repeat TEs (MITEs) were 

identified using MUST (http://csbl1.bmb.uga.edu/ffzhou/MUST/). 

 

A BLASTN
27

 “walking” approach was used to construct repeated elements from the 

3,220,522 unassembled reads (454 and BAC ends). This approach was based on the 

identification of highly repeated sequences (seeds) and a BLASTN analysis against the 

repeated sequences database. After the identification of an element, the related sequences 

were eliminated from the database. 

 

 

Southern blots analysis 

DNA extraction was performed from fresh leaves according to Lanaud et al.
20

 and digested 

with restriction enzyme HindIII. Sequences for probe synthesis were analyzed for PCR primer 

design using Primer3 software. For the Copia-like LTR retrotransposon Gaucho, the primer 

pair used to amplify a DNA fragment of 968 bp was: (forward) 5'-

TTTCGCTGTGACGAAAGATG-3' and (reverse) 5'-ACGCTGTCTTGGGTACATCC-3'. For 

the tandem repeat ThCen, the primers pair used to amplify a DNA fragment of 160 bp was: 

(forward) 5'-CATGCCTTCGAAAGTCC-3' and (reverse) 5'-

TGGACTTTTCTTCTCAATCG-3'. 

 

RFLP analysis 

Genomic DNA (2 μg) was completely restricted with 10 U of HindIII (New England Biolabs), 

fractionated on 0.8% agarose gels and transferred to Hybond-N+ (Amersham) nylon 

membranes using the alkali blotting protocol as described in its users’ manual. The blots were 

hybridized for 24 h at 65°C in a solution containing 5x SSC, 5x Denhardt’s, 0.5% SDS, 100 

μg/mL fragmented and denatured herring sperm DNA and 
32

P-labeled probe. The membranes 

was then washed with 2x SSC 0.5x SDS (2x 30 min) and 0.5x SSC 0.1x SDS (30 min) and 

exposed with autoradiography film (48 hours). 
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Fluorescence In situ Hybridization (FISH) of TE probes  

FISH was performed on mitotic metaphase spreads prepared from meristem root tip cells of 

an Amelonado cocoa genotype as described by D’Hont et al
28

. The probes were labeled with 

Alexa-488 dUTP and Alexa-594 dUTP by random priming (Fisher Bioblock Scientific). The 

hybridization mixture (50 L per slide) consisted of 50% formamide, 10% dextran sulphate, 

2x SSC, 1% SDS and 2 μg/mL labeled probe. The slides were denatured in a solution of 70% 

formamide in 2× SSC at 80°C for 3 min. The denatured probe was placed on the slide and 

hybridization was performed overnight in a moist chamber at 37°C. After hybridization, slides 

were washed for 10 min in 2x SSC, 0.5x SSC, 0.1x SSC at 42°C. The slides were mounted in 

Vectashield antifade solution (Vector Laboratories) containing 2.5 μg/mL DAPI as 

counterstaining. The slides were examined with a Leica DMRAX2 fluorescence microscope 

and the images of blue, red and green fluorescence were acquired separately with a cooled 

high resolution black-and white CCD camera. The camera was interfaced to a PC running the 

Volocity software (Perkin Elmer). 

 

Protein coding gene annotations 

Transcriptome 

Two EST collections were used to support the annotations. 

 

• 454 EST from Criollo B97-61/B2 transcriptomes 

RNA was extracted from stems, mature and young leaves, vegetative buds, flowers, and floral 

cushions of the genotype B97-61/B2 according to Argout et al.
29

. cDNA was synthesized with 

the SMARTer™ PCR cDNA Synthesis Kit. The 454 sequencing generated 992 821 raw reads 

from which 715 457 cleaned reads were identified for assembly. To assemble the 454 data, 

we used a modified version of the ESTtik
30

 pipeline based on TGICL
31

. We started by 

cleaning the raw sequences: (1) they were trimmed by removing vector sequence using the 

Vecscreen software against the Univec database and (2) low complexity sequences were 

masked using the Mdust program (http://compbio.dfci.harvard.edu/tgi/software/). Any reads 

composed of more than 85% low complexity regions were discarded. We compared cleaned 

reads to the comprehensive non-coding RNA sequence database fRNAdb v3.4
32

 using 

BLASTN reads with an E-value below 1E-20 were discarded. Finally, we assembled reads 

longer than 120 bp using the TGICL software
31

. During the clustering step, two sequences 

were clustered together if their overlap length was above 60 bp with an identity percentage 

above 94%. Then, two sequences of a cluster were assembled if their overlap length was 

above 60 bp with an identity percentage above 95%. With this method, 38,737 contigs were 

assembled. 

 

• Sanger EST from different cocoa genotype transcriptomes 

We also used a previous collection of 149,650 ESTs, enriched in full length cDNA, and 

corresponding to 48,594 unique transcripts. These ESTs were sequenced using the Sanger 

method in the context of an international project and assembled with ESTtik
30

 Among the 

149,650 ESTs, 2,850 ESTs were produced from a pure homozygous Criollo originated from 

Belize, similar to the Criollo genotype B97-61/B2 and 47,800 ESTs were produced from 

hybrids between Criollo and Forastero genotypes. 

 

Nature Genetics: doi: 10.1038/ng.736



11 

 

Protein coding gene model predictions  

Gene model predictions have been produced using the integrative gene prediction package 

EuGene
33

. It allows integrating various sources of information including statistical and 

similarity information. The full set of similarities against the scaffolds used in all T. cacao 

predictions includes: 

Similarities to available T. cacao ESTs, obtained using GenomeThreader
34

. 

Similarities to proteins from SwissProt
35

, TAIR
36

, Malvacae Genbank extraction
37

, with high 

confidence genes models of Glycine max
38

 and peptides reconstructed from T. cacao ESTs 

using Prot4EST
39

, searched using NCBI-BLASTN
27

. 

Similarities to EST from A. thaliana, Gossypium, Vitis vinifera and Citrus Genbank 

extraction
37

 and T. cacao transcriptome, searched using NCBI-TBLASTX.  

 

To train the statistical models for T. cacao, a set of high-confidence sequences was built as 

follows. A version of EuGene previously trained on Medicago. truncatula was applied using 

all previous similarities as evidence. Only predicted gene models that were fully covered by 

EST alignments and without any 'N' in their genomic sequence were retained. This resulted in 

a collection of 11,853 coding sequences (CDSs; total length of 11,732,053 bp), 41,844 intron 

sequences (13,624,230 bp), 6,991 3' UTR sequences (3,158,283 bp) and 5,639 5' UTR 

sequences (1,481,325 bp). Statistical models of DNA composition (Interpolated Markov 

Models) for T. cacao were trained on these regions.  

 

To train SpliceMachine for translation start prediction, we extracted from this same set of 

fully EST-supported predictions, all regions around the predicted ATG that also corresponded 

to the alignment of the N-terminal region (20 AA) of a Malvacae or Swissprot protein 

sequence. Sequences containing 'N' were removed. Following redundancy filtering, we 

obtained a set of 317 positive examples. 10,000 negative examples were built from the reverse 

strand of the same regions. The ratio between the number of positive and negative examples is 

usual: each validated transcript provides just one positive example (the ATG) but its reverse 

complement usually contains many more occurrences of the ATG 3-mer defining negative 

examples. 

 

Statistical models for splice sites were built from the spliced EST alignments obtained from 

GenomeThreader
34

. After redundancy filtering, 20,000 positive examples were extracted from 

these alignments and 200,000 negative examples were extracted from the opposite strand of 

the same regions. SpliceMachine was systematically trained using the same context size as for 

M. truncatula training. The ratio between positive and negative examples is expected for the 

same reason as above. 

 

The EuGene combiner was then used to build a consensus T. cacao annotation integrating the 

previous statistical models and the previous similarities using the same evidence weighting as 

in the M. truncatula-trained version of EuGene. 50,582 genes were predicted.  

 

Homology search and functional annotation 

To identify putative homologies to known protein sequences, we performed BLASTP for 

each predicted coding sequence against the UniProtKB/Swiss-Prot and UniProtKB/TrEMBL 

databases
35

. Based on three parameters: (1) Qcov (Query coverage = length high-scoring 

segment pair (HSP)/length query), (2) Scov (Subject coverage = length HSP/length subject) 

and (3) identity, we kept only the best result to assign a putative function to a polypeptide 

(Fig. 1). We have used a reciprocal best-hit-based search approach to identify putative 
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orthologs from different species (Supplementary Table 9). Additional information was 

obtained by protein-signature scanning. InterProScan was used for sequence comparison to 

the InterPro database
40

.  

 

Filtering of protein coding genes tagged as transposable element genes or as false positives 

There is no perfect strategy or program either to predict genes either to separate plant genes 

from transposable element genes (TEG). So we made empiric choices, the first one was to not 

mask the sequence before predicting genes but rather to filter TEG afterward. We also knew 

that as in all prediction, there were false positives and false negatives; so we decided to apply 

empiric analyses with empiric thresholds to remove false positives. We did nothing for the 

false negatives. In the next versions of the genome, the filtering steps should be refined. The 

predicted genes filtering was done after the functional annotation and other analyses described 

here. Filters based on nucleic and protein sequence comparisons were all applied to the 

50,582 predicted genes. Then, the genes that were never eliminated by any filter were kept to 

constitute the final set of 28,798 protein coding genes. 17,342 transposable element genes 

(TEG) were tagged as follow: 

8,744 TEGs were tagged using BLASTP of the predicted polypeptides against Repbase [30 

Jurka 2005] polypeptides (repbase1405_aaSeq_cleaned_TE.fa 

http://www.girinst.org/server/RepBase/index.php) with Qcov higher than 70%. 

Of the 41,838 remaining genes, 330 were removed using Megablast of the predicted CDS 

against the Copia-like LTR retrotransposon Gaucho. 

Of the 41,508 remaining genes, 4875 were discarded using Megablast of the predicted CDS 

against the 67,575 TEs annotated on the assembly (Table 1) or the 2,036 TE families 

identified in Supplementary Table 6 with Qcov higher than 70%. 

Of the 36,633 remaining genes, 3,393 were removed based on keywords in the product and 

Interpo domains. 

Of the 33240 remaining genes, 4439 genes were tagged as false positive among predicted 

polypeptides of length lower than 100 aa that have no similarity found either using BLASTP 

of the polypeptide against Swiss-Prot with a Qcov higher than 70% and identity higher than 

30% or using TBLASTN against the T. cocoa EST contigs with a Qcov higher than 70% and 

identity higher than 70%.  

Finally of the 28,801 remaining genes, three were removed because they were overlapping 

rRNA genes (manual checking).  

Thus overall, 28,798 protein coding gene models were retained of which 23,529 were mapped 

on the 10 pseudomolecules. 

 

 

Construction of families of homologous polypeptides and identification of cocoa subfamily-

specific polypeptides 

As a prerequisite to comparing gene content of T. cacao to other organisms at the whole-

genome scale, we constructed families of homologous proteins from all sequences from cocoa 

and a wide phylogenetic range of eudicot organisms such as A. thaliana, V. vinifera, Populus 

trichocarpa and Glycine max. 

 

We first removed highly similar paralogous genes using the CD-HIT algorithm
41

. Then, we 

performed an all-against-all comparison using BLASTP, and alignments with a Qcov and 

Scov lower than 80% and an identity lower than 30% were retained. Finally, BLAST results 

were fed into the stand alone OrthoMCL program using a default MCL inflation parameter of 
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1.5
42

. 103,580 of 147,507 protein sequences (70.2%) were clustered into 18,154 ortholog 

groups (Supplementary Table 9). 2,053 genes were clustered into 682 clusters specific to 

cocoa. A Venn diagram representing these data is shown in Figure 3.  

 

In comparative genomics, BLAST is commonly applied to infer homology relationships 

between sets of genes from different organisms
43

. One widespread method is based on Best 

BLAST Mutual Hits (BBMH). If the two sequences have reciprocal relationships, then they 

are presumed to be the most similar to each other and are deemed putative orthologs. We used 

BBMH to define cocoa orthologs of genes in the other organisms (Supplementary Table 9). 

Gene ontology (GO) terms were assigned to the five proteomes using the Blast2GO 

software
44

 (Figure S6-S7). 

 

Non-coding gene annotations and target prediction 

Theobroma cacao rRNA annotation 

T. cacao rRNA genes were predicted by aligning the A. thaliana 25S, 18S and 5.8S rRNA 

against the scaffolds with BLASTN (Qcov above 0.8 and identity above 50%). There is one 

triplet of rRNAs (25S, 18S, 5.8S) on non-anchored scaffolds. A 5.8S rRNA gene and a 18S 

rRNA gene are colocalized on chromosome 7, whereas a 25S rRNA gene is localized on 

chromosome 4. tRNAscan-SE
45

 was used to identify tRNA genes on the scaffolds and 472 

genes were predicted. The number of rRNA genes identified in the assembly is likely to be 

greatly underestimated because of the lack of sequencing and assembly efficiency for the part 

of the genome that includes the repeated sequences when using data mainly composed of 454 

shotgun reads. 

 

Theobroma cacao microRNA annotation 

Sequences of mature plant miRNAs were retrieved from miRBase release 14
46

 and used as 

queries to search the T. cacao genome assembly using BLASTN. Hits with no more than one 

mismatch from a query were expanded to 150 nt upstream and 150 nt downstream and 

examined by MIRcheck
47

. miRNA candidates that were on the same arm of the hairpin as the 

known family members and passed MIRcheck with the parameters "-mir_bulge",3, "-ass", 

2,"-unpair" were collapsed to retain a single miRNA for a given hairpin if length variants or 

position variants are present. The decision of which variant to retain was made as follows: for 

length variants, if the miRNA family was expressed in A. thaliana (according to the data in 

Ma et al.
48

), then the miRNA variant with the length of the most abundantly expressed 

miRNA was kept; if not, a 21-mer was favored. For positional variants, the miRNA variant 

with the greatest number of similar miRNA sequences in miRBase was retained.  

 

A total of 83 T. cacao microRNAs (miRNAs) from 25 families were computationally 

predicted based on sequence similarity with known miRNAs in miRBase release 14 

(Supplementary Table 10). The miRNA population size is reasonable compared to the number 

of miRNAs in other plant genomes in miRBase (Supplementary Figure 8), although our tally 

of T. cacao miRNAs is certainly an underestimate, as we were limited to identification by 

homology. 

 

Because 25 T. cacao miRNA families were encoded by 83 loci, the number of paralogous loci 

per family was examined. Compared with A. thaliana, the cumulative distribution of T. cacao 

miRNAs was similar to the more-conserved (MC) subset of the A. thaliana miRNAs 
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(annotated outside of the Brassicaceae family in miRBase release 14), but quite different 

from the miRNA population in A. thaliana (Supplementary Figure 9). This is expected, 

because the miRNA prediction method finds only miRNAs conserved between T. cacao and 

another species.  

 

Theobroma cacao microRNA target prediction 

miRNA targets were predicted with the PERL script “axtell_targetfinder.pl” from the 

CleaveLand 2 package
49

. Randomization using 8300 randomly-shuffled miRNAs (100 times 

of the total number of real miRNAs) was also done using the same script. An average of 0.7 

targets were predicted at a complementarity score of three for each randomized miRNA; this 

noise estimation increased to over two at a score of four. Therefore, a cutoff score of three 

was used for target prediction (higher target prediction scores indicate less complementarity). 

 

Predicted targets were used as queries to search A. thaliana (TAIR9) and Oryza sativa coding 

sequences, and the top BLASTX hit with an E value <= 10E
-4 

to indicate the potential 

function of the predicted targets. 89 targets of 19 miRNA families were predicted, and 85 top 

hits (68 unique proteins) in A. thaliana and 83 top hits (66 unique) in O. sativa were identified 

by BLASTX search. 

 

Because GO annotation was not yet available for T. cacao, GO annotation for the 68 unique 

A. thaliana genes homologous to the predicted T. cacao targets was used to search for GO 

term enrichment
50

. The terms “nucleus”, “transcription factor activity” and “developmental 

processes” were the most significantly enriched terms in each GO category (Supplementary 

Table 11) for T. cacao miRNA target homologs in A. thaliana compared to the entire A. 

thaliana genome. These results are consistent with previous findings
51

 that many conserved 

miRNA targets are transcription factors involved in developmental processes. 

 

 

Identification of LRR-LRK genes in the T. cacao genome 

 
The LRR-RLK receptors contain extracellular domains consisting of 1 to about 30 LRRs 

flanked by two cysteine pairs, a single-pass transmembrane domain (TM) and an intracellular 

serine/threonine protein kinase domain (KD)
52

. Based on this structural profile, we retrieved 

T. cacao (Tc) and A. thaliana (At) LRR-RLK genes in 3 steps using the proteome of A. 

thaliana (TAIR release 9: 33,200 sequences) from the TAIR website
53

 and our predicted 

cacao proteome. First, we ran the hmmsearch program
54

 to search for the LRR Hidden 

Markov Model (HMM) profile (PF00560)
55

 in the 28,798 Tc protein sequences (23,529 

mapped and 5,269 unmapped). On this set of sequences, we again used the hmmsearch 

program, this time seeking the kinase HMM profile (PF00069.16). Second, we extracted the 

kinase domain sequences of these proteins and aligned them with clustalw2 (default 

parameters)
56

. Finally, based on this alignment, we generated a phylogenetic tree by the 

maximum likelihood method with 100 bootstrap replicates (default parameters)
57

. We 

annotated tree leaves according to previous studies in order to classify the Tc sequences into 

one of the 19 subfamilies of LRR-LRK
58

. All manipulations on phylogenetic trees were 

performed with the treedyn
59

 and treeview
60

 programs. Some were performed on the 

“phylogeny.fr” web site
61

. 
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Characterization of T. cacao genes orthologous to NBS-encoding genes  

Genes coding for nucleotide-binding site (NBS) proteins play a determining role in resistance 

to pathogens and in the progression of the cell cycle
62,63

. This NBS-encoding gene family is 

rather abundant in plant genomes
64-66,62

. The NBS R-gene family is subdivided into different 

groups based on the structure of the N-terminal and C-terminal domain of the protein. The N-

terminal domain either has a Coiled-Coil (CC) motif, a TIR (Toll Interleukin Receptor) motif 

or a sequence without obvious CC or TIR motifs. The C-terminal domain is either with or 

without a Leucine Rich-Repeat (LRR) motif
67

. We have identified and characterized the set of 

cocoa genes orthologous to R-gene-related NBS-encoding genes with (1) a description of the 

conserved domains of all the NBS proteins which were used to conduct phylogenetic analyses 

and (2) a distribution of NBS-encoding orthologous genes across pseudomolecules. 

 

Classification of the predicted genes encoding NBS domains 

Cocoa protein sequences, mapped and unmapped, were screened using hidden Markov 

models (HMM) to search for the Pfam NBS (NB-ARC) family PF00931 domain (E value 

cutoff of 1.0)
68

 using hmmsearch version 3 
54

. Of 369 sequences that were manually cleaned, 

we kept 297 sequences. To detect TIR domains, the 297 predicted NBS-encoding amino acid 

sequences were screened using the HMM model Pfam TIR PF01582 (E value cutoff of 1.0). 

To detect LRR motifs, Pfam HMM searches using models for LRR_1 (PF00560), LRR_2 

(PF07723) and LRR_3 (PF07725)
68

 were used to screen predicted cocoa NBS-encoding 

amino acid sequences. CC motifs were detected using Paircoil2 with a P score cutoff of 0.025 
69

. 

 

NBS domain motif description  

The NBS domain is characterized at least by five conserved motifs
70

. A specific consensus 

was deduced from the aligned sequences of all cocoa genes orthologous to NBS-encoding 

genes (Supplementary Figure 10). The consensus sequence of the P-loop motif, 

xGxGGxGKT(T/A)Lxx, was found in the majority of the cocoa genes orthologous to NBS-

encoding genes except for eight predicted genes.  

The consensus sequence of the kinase-2 motif, KxxLLVLDDVWxx, was found in 86% of all 

genes orthologous to NBS-encoding genes with a tryptophane (W) which is most often 

associated with CC-NBS proteins. The kinase-3 consensus sequence (xGsKxxxTTRxxx), the 

putative membrane-spanning motif (xCxGLPLAxxxx) with the consensus GLPL and the 

consensus MHDL motif, (xxxMHDLxxD), were found respectively in 90%, 85% and 70% of 

all NBS-encoding cocoa orthologous genes. 

 

Total number and organization of T. cacao genes orthologous to NBS-encoding genes  

Among 28,798 automatically annotated genes, a total of 297 non redundant genes orthologous 

to NBS-encoding genes were identified and manually verified (Supplementary Figure 10). 

The cocoa NBS-encoding orthologous gene family accounts for approximately 0.9% of total 

predicted genes. This value is similar to that of other eudicot plants: 0.7% for A. thaliana, 1% 

for P. trichocarpa, 1.2% for M. truncatula and 1.8% for V. vinifera
64-66

. The distribution of 

the number of genes according to the motifs framing the NBS domain for cocoa and these 

four other plant genomes is presented in Supplementary Table 14
71,64,66

. The TIR-NBS-LRR 

and TIR-NBS orthologous genes are under represented in the cocoa genome compared to 

other plants.  
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Phylogenetic analysis of NBS domains 

The 297 non redundant NBS orthologous genes from T. cacao and eight representative A. 

thaliana NBS-encoding genes
72

 were further studied by comparison to At-NBS (AT3G44670, 

AT4G26090, AT1G12220, AT3G07040, AT3G46530, AT5G43470, AT4G33300, 

AT5G45510) sequences obtained from the NIBLRRS Project website
73

. The sequences were 

aligned using MAFFT
74

. We applied a masking procedure to the optimized alignment to 

detect and remove amino acid columns/positions containing either no or a low phylogenetic 

signal. Our workflow uses a modified version of the AL2CO software for calculation of 

positional conservation
75

. The amino acid positions retained for phylogenetic constructions 

share a minimum conservation index of 2 together with a percentage of gaps below 50%. A 

phylogenetic tree was constructed using the PHYML
76

 with bootstrap multiple alignment 

resampling set at 400. PHYML first constructs a BioNJ tree using the Neighbor-Joining tree 

algorithm and then optimizes this tree to improve its likelihood by successive iteration. All 

manipulations on phylogenetic trees were performed with the treedyn
59 program. 

 

The phylogenetic distribution of non-TIR-NBS-encoding orthologous genes indicates that 

one-third of cocoa genes are structured around those of A. thaliana while the other two-thirds 

are divided into five cocoa-specific expansions, (Supplementary Fig. 11) including two major 

subgroups. According to the classification of Arabidopsis NBS-At genes by Meyers et al. 

2003
72

, the cocoa genes organized around class CNL-B (AT1G12220 and AT4G26090) 

belong mainly to the cluster of pseudomolecule 6. Those that are organized around class 

CNL-A/C/D belong mainly to the two first clusters of the pseudomolecule 10. A group that 

contained four NBS-LRR orthologous genes from the first cluster of the pseudomolecule 2 

was identified from the remainder of cocoa NBS-encoding orthologous genes.  

 

Identification of NPR1 genes in the cocoa genome 

 

Plants have evolved a complex network of defense responses, often associated with a 

response local to the site of infection
77

. In addition, defenses are also systemically induced in 

remote parts of the plant in a process known as systemic acquired resistance (SAR). Multiple 

studies in both monocots and dicots have shown that salicylic acid (SA) plays a central role as 

a signaling molecule in SAR. NPR1 (Nonexpressor of pathogenesis-related 1), a central 

mediator of the plant defense response, was originally identified by screening for npr1 

mutants that were insensitive to SA
78

. It is believed that NPR1 also plays a role in the 

jasmonic acid (JA) signaling pathway and mediates the crosstalk between the SA and JA 

defense pathways to fine tune defense responses
79

. NPR1 encodes a protein containing 

ankyrin repeats and a BTB/POZ domain, both of which mediate protein-protein interactions 

in animals
80

. NPR1 is constitutively expressed, and NPR1 protein is present as inactive 

oligomers in the cytoplasm of the cell. Upon SAR induction, the redox state of the cell is 

altered, resulting in the reduction of NPR1 to its active monomeric form, which moves into 

the nucleus where it can regulate defense gene transcription via interactions with TGA 

transcription factors
81,82

. 

 

The NPR gene family of Arabidopsis consists of NPR1 and five NPR1-like genes encoding 

proteins with significant similarity to NPR1, named NPR1-like 2 (NPR2), NPR3, NPR4, 

BLADE-ON-PETIOLE2 (BOP2; also named NPR5), and BOP1 (also named NPR6)
83

. These 

can be grouped into three subfamilies based on phylogenetic analysis (NPR1/2, NPR3/4 and 
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BOP1/2). BOP2 and BOP1 have functionally redundant roles in the regulation of symmetry 

during leaf morphogenesis and abscission
84

. The functions of NPR3 and NPR4 have been 

suggested to involve repression and/or activation of the plant defense response pathway
85,83

. 

Recent work in the Guiltinan laboratory strongly suggests that Arabidopsis NPR3 acts as a 

repressor of defense responses during flower development (M. Guiltinan, unpublished data). 

A growing body of evidence has revealed that the salicylic acid-dependent, NPR1-mediated 

defense pathway is also conserved in other plant species across wide phylogenetic distances 

including orthologs in grapevine
86

, tomato
87

, apple
88

 wheat
89

 and rice
89

. Thus, it appears that 

the mechanisms of SA-dependent, NPR1-mediated defense responses likely evolved very 

early in the emergence of the plant kingdom. 

 

As key regulators of the defense pathway in plants, the NPR1 gene family is of potential 

importance for breeding of disease resistant varieties. To characterize the NPR1 orthologous 

family in T. cacao, the cocoa genome sequence was searched using BLAST with each of the 6 

Arabidopsis NPR1 family member gene sequences as queries. Full length protein sequences 

of all six Arabidopsis NPR1 gene family members were used to search the T. cacao genome 

assembly V1.0 database using the TBLASTN
27

 program with an E-value cutoff of 1E-40. 

Four cacao genes were identified with e-values below 5E-41. The next closest hit had an e-

value of 1E-15 and was not considered a bona fide NPR1 family member. Using the 

TBLASTN program, a full length protein sequence of Arabidopsis NPR1 was used to search 

the Phytozome database (http://www.phytozome.net/) to obtain NPR-like genes from poplar, 

Medicago and grape (e-value cutoff of 1E-20). Six NPR1 family member genes were 

identified in P. trichocarpa (Poplar), four in M. truncatula (medicago) and three in V. vinifera 

(grape). A phylogenetic tree was constructed (Supplementary Fig. 12) using coding sequences 

from each gene to evaluate the genetic relatedness of the cocoa NPR1 orthologous family 

members to those from other species. The cocoa genome contains a single orthologous gene 

in the NPR1/2 and BOP subfamilies and two orthologous genes in the NPR3/4 subfamily.  

 

Genome distribution of T. cacao genes orthologous to NBS, LRR-LRK and 

NPR1-like genes and comparative mapping with QTLs related to disease 

resistance in T. cacao 

 

The distribution of all defense-related genes orthologous to NBS, LRR-LRK and NPR1-like 

genes is represented in Supplementary Fig. 13. Among the 297 unique NBS-encoding 

orthologous genes, 237 were mapped on the cocoa pseudomolecules. The genes orthologous 

to NBS-encoding genes were distributed across the ten chromosomes in 46 singletons and 41 

clusters comprising between 2 and 17 tightly linked genes. Similar results were observed for 

sunflower
90

, cucumber
91

 and poplar
92

 in which 75% of the NBS genes are located within 

clusters, indicating that they have evolved through tandem duplications, similar to the 

situation in other known plant genomes. Of the four NPR1-like genes in cacao, three were 

mapped on the pseudomolecules (PM 5, 6 and 9) and one is associated with the unassembled 

sequences. 

 

A meta-analysis of 76 QTLs related to disease resistance identified in T. cacao in 16 different 

experiments was recently made by Lanaud et al.
93

. Their genetic localization was compared 

with the distribution of NBS, LRR-LRK and NPR1-like orthologous cocoa genes on the 

pseudomolecules using the Spidermap Software (JF Rami non published data). 

(Supplementary Fig. 13).  
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Considering an average confidence interval of about 20 cM for the QTLs identified
93

 for 

nearly all QTLs it is possible to find a corresponding genome region containing NBS, or 

LRR-LRK genes. This comparative mapping provided a large number of candidate resistance 

genes, potentially underlying the QTLs of resistance already identified, and which have to be 

confirmed by complementary functional approaches. Of the NPR1 orthologous genes, only a 

single co-localization was found between a gene most closely related to NPR1 and a QTL for 

resistance to witches' broom disease (Tc09t007660 on PM9). 

 

 

Genome distribution of lipid and flavonoid orthologous genes and 

comparative mapping with QTLs for traits related to fat and flavonoids  

 

QTLs for butter fat content and hardness were detected in three studies conducted by Lanaud 

et al.
93

, Araujo et al.
94

 and Alvarez et al.
95

. QTLs for flavonoid content (epicatechin and 

procyanidins) were identified by Alvarez et al.
95

 in a Venezuelian cocoa population 

corresponding to hybrid Criollo types. QTLs for cotyledon, leaves, staminode, sepal and fruit 

colors were identified by Marcano et al.
96

. Astringency is known to be related to certain 

procyanidin compounds such as tannins. Several QTLs linked to chocolate astringency were 

previously identified by Lanaud et al.
93

 and are also reported in this analysis.  

 

The QTLs projection on a same consensus map, suitable for QTL comparisons was made 

using a similar strategy, and with the same consensus map as those used by Lanaud et al.
93

 for 

the meta-analysis of QTLs of resistance (Supplementary Fig. 15). Of the ten QTLs for cocoa 

butter quality, seven are located close to genes in the pathway. For example, the strongest 

QTL for fat content localized to the bottom arm of LG9 shows a close localization to a cluster 

of genes orthologous to KCS, KASIII and FAD3 genes on PM9 (Supplementary Table 14).  

 

Of the 18 QTLs for flavonoid traits, 11 showed co-localization to genes orthologous to key 

genes in the pathway. A QTL for astringency located near the top of LG1 is closely associated 

with three orthologous genes in the pathway located on PM1. QTLs for epicatechin and 

procyanidin dimers reside on LG3, very close to a gene for LAR, a key enzyme leading to 

formation of the flavan-3-ols, including catechin (Supplementary Table 15). On LG4, a QTL 

for organ coloration (purple anthocyanins) is localized very close to an othologous gene 

encoding OMT, the first committed enzyme in the anthocyanin pathway. A similar pigment 

QTL on LG6 is co-localized with a gene for ANR on PM6. This gene product acts one step 

after the branch point to anthocyanins, and reduced expression of this gene would be expected 

to correlate with darker coloration. 

 

Cacao genome synteny, duplication, evolution and paleohistory. 

Arabidopsis, grape, poplar, soybean, papaya sequence databases. 

 Genome sequences of Arabidopsis (5 chromosomes - 33,198 genes - 119 Mb), grape (19 

chromosomes - 21,189 genes - 302 Mb), poplar (19 chromosomes - 30,260 genes - 294 Mb), 

soybean (20 chromosomes - 46,194 genes - 949 Mb), and papaya (9 chromosomes - 19,205 

genes – 234 Mb) were used as described in Salse et al.
97

.  
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Synteny and duplication analysis. 

Three new parameters were recently defined in Salse et al.
97

 to increase the stringency and 

significance of BLAST sequence alignment by parsing BLASTP results and rebuilding HSPs 

(High Scoring Pairs) or pairwise sequence alignments to identify accurate paralogous and 

orthologous relationships. 

 

Distribution of KS distances (MYA scale) for paralogous and orthologous gene pairs 

We performed sequence divergence and speciation event datation analysis based on the rate of 

non synonymous (Ka) vs. synonymous (Ks) substitutions calculated with PAML 

(Phylogenetic Analysis by Maximum Likelihood)
98

. We used average substitution rate (r) of 

6.5 × 10
-9 

substitutions per synonymous site per year for grasses in order to calibrate the ages 

of the gene under consideration
99,100

. The time (T) since gene insertion was then estimated 

using the formula T = Ks /r. 
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Supplementary Tables 
 

 

Supplementary Table 1. Characteristics and quality of BAC libraries of Theobroma 

cacao var. Criollo 

 
Supplementary Table 1. Characteristics of BAC libraries from T. cacao var. Criollo   

        

Species 
DNA 
fragmentation 

Total 
number 
of 
clones 

Total 
number 
of 
plates 

% non 
insert 
containing 
clones 

% 
chloroplast 
clones 

Avg 
insert 
size 
(kb) 

Estimated 
genome 
coverage 

        

T. cacao  HindIII 18,432 48 0 0 135 5.14x 

T. cacao  EcoRI 25,344 66 0 0 137 8.04x 

 

 

 

 
Supplementary Table 2. Raw sequencing data overview. 

 

 Number of reads Number of bases Coverage Insert size (bp) 

Roche/454  

Single reads 
17,615,336 5,665,734,388 13.2x NA 

Roche/454  

Mate-pairs reads 
8,819,944 1,398,260,416 3.3x 8,000 

Sanger  

BAC ends 
84,547 71,705,251 0.2x 136,000 

Illumina  

Paired-end reads 
397,959,108 19,102,037,184 44.4x 200 
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Supplementary Table 3. Nuclear DNA content (2C) and genome size of 27 cocoa clones 

(2n = 2x = 20) or related taxa. 

 

Species Accession name
Number of 

measures

2C DNA 

content (pg)

SD 

(pg)

Bonferroni's 

grouping (P = 0.05) 
a

Genome size 

(Mbp/1C)

B97 61/B-2 5 0.88 0.023 abc 430

CATONGO 3 0.93 0.001 bd 455

ICS 100 4 0.89 0.016 bc 435

ICS 95 3 0.91 0.031 b 445

IMC 78 3 0.97 0.013 e 474

LAF1 2 0.84 0.007 a 411

LCTEEN 162/S 10-10 3 0.99 0.021 ef 484

LCTEEN 255 5 0.97 0.025 ef 474

LCTEEN 413 4 1.01 0.057 efg 494

LCTEEN 82 3 0.94 0.007 be 460

LCTEEN 83 3 0.95 0.005 be 465

LCTEEN 85 4 0.94 0.01 bd 460

Matina 1-7 3 0.93 0.002 bd 455

Na 226 2 0.94 0.0001 be 460

OC 77 2 0.91 0.02 bcdh 445

SPA 5 2 0.92 0.012 bcdg 450

Theobroma grandiflora 3 1.02 0.06 efgh 499

Theobroma kanukensis 5 0.76 0.019 j 372

Theobroma microcarpa 5 0.73 0.005 k 357

Theobroma speciosa 3 1.02 0.022 e 499

Herrania albiflora 3 0.69 0.009 i 337

Herrania balaensis 3 0.82 0.012 a 401

Herrania breviligulata 3 0.8 0.027 a 391

Herrania camargoana 3 1.05 0.015 g 513

Herrania nitida 4 0.7 0.009 i 342

Cola nitida 3 4.86 0.039 l 2377

  a 
2C content is not significantly different within each class identified by the same letter following Bonferroni's system.

Theobroma cacao 

(ranked by size of 

genome)
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Supplementary Table 4. Cocoa genome assembly overview. 

N50, N80, N90 refer to the size (or number) above which 50%, 80% and 90% of the total 

length of the sequence assembly, respectively, can be found 

 

 Contigs Scaffolds 

Number 25,912 4,792 

Cumulative size (Mb) 291.4 326.9 

Average Size (Kb) 11.2 68.2 

N50 size (Kb) 19.8 473.8 

N50 number 4,097 178 

N80 size (Kb) 8.0 143.9 

N80 number 11,043 542 

N90 size (Kb) 4.8 75.5 

N90 number 15,723 854 

Largest size (Kb) 190 3,415 
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Supplementary Table 5: Overview of the anchoring of the assembly on the cocoa linkage 

groups. 

 
Linkage group 

(LG) or 

pseudomolecule 

(PM) 

Size 

(cM/Mbp) 

Number of 

markers 

with 

positive 

blast 

Number of 

scaffolds 
Number of 

anchored 

and oriented 

scaffolds 

Gene number 

per 

pseudomolecul

e 

LG1 

PM1 

94.1 

31.27 

191  

46 

 

34 

3588 

LG2 

PM2 

101.1 

27.75 

146  

55 

 

31 

2879 

LG3 

PM3 

76.9 

25.47 

158  

49 

 

23 

2664 

LG4 

PM4 

64.2 

23.50 

126  

39 

 

21 

2627 

LG5 

PM5 

78.1 

25.66 

141  

46 

 

19 

2623 

LG6 

PM6 

64 

15.48 

77  

29 

 

18 

1872 

LG7 

PM7 

52.6 

14.17 

57  

27 

 

12 

1417 

LG8 

PM8 

59.2 

11.53 

70  

16 

 

12 

1488 

LG9 

PM9 

100.9 

28.46 

171  

49 

 

25 

3017 

LG10 

PM10 

59.5 

15.16 

55  

29 

 

11 

1354 

total 

number 

 

 

 

1192 385 

 

206 

 

23529 

total length 750.6 cM / 

218.45 

Mbp 

 218.4 

Mbp 

162.8 Mbp  

Total not 

anchored 

108.89 

Mbp 

 4407  5269 
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Supplementary Table 6: Transposable elements detected in the T. cacao genome. 

 

Element 

 

Number of families 

 

Number of elements 

 

Class I   

     Copia 290 18,060 

     Gypsy 159 12,622 

     non classified 198 19,260 

Class II   

     tranposons 36   7,284 

     MITEs 1353 14,598 
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Supplementary Table 7: Relative copy number of ThCen and Gaucho repeated 

sequences in the cocoa genome. 

 

The relative copy number of TcCen and Gaucho repeated sequences was evaluated, in 

comparison with B97-61/B-2, in a panel of T. cacao genotypes differing in genome size. The 

copy number was estimated by the hybridization signal intensities on Southern blots on which 

Hind III-restricted DNA from each cocoa accession was hybridized using TcCen and Gaucho 

probes. The relative signal intensities were evaluated by Image Quant in comparison with 

B97-61/B-2 hybridization signals after normalization by DNA concentrations. The relative 

DNA amounts compared to those of B97-61/B-2 were also estimated by Image Quant in an 

agarose gel image after electrophoresis of DNA restricted by HindIII restriction enzyme and 

BET staining. 

 

 

Genotypes 
relative DNA  
amount 

genome  
size (Mb) 

relative 
TcCen copies 

relative 
Gaucho  
copies 

          

     Theobroma cacao genotypes 
   LAN2 1.08 411 1.46 0.61 

LAF1 0.78 418 1.51 1.17 

B 97 61/B-2   1.00 430 1.00 1.00 

UF676 2.20 434 1.88 0.64 

ICS 100 1.31 435 1.57 0.89 

ICS 95 1.24 445 1.83 0.71 

CATONGO 1.62 455 1.95 0.60 

MATINA 1/7 1.37 455 1.97 0.49 

LCTEEN 82 1.13 460 2.31 0.67 

LCTEEN 85 1.09 460 2.33 0.71 

UPA 402 1.12 461 1.96 0.53 

LCTEEN 83 0.86 465 2.44 0.57 

IMC 78 0.96 474 1.98 0.62 

LCTEEN 162/S 10-10 0.90 484 2.50 0.48 

LCTEEN 413 1.26 494 1.52 0.69 

     minimum T. cacao value 
 

411 1.00 0.48 

maximum T. cacao value 

 

494 2.50 1.17 
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Supplementary Table 8: Features of Theobroma cacao genes in comparison with 

Arabidopsis thaliana and Vitis vinifera. 

 

 

 Theobroma cacao Arabidopsis thaliana 
(TAIR9) 

Vitis vinifera 
(8X) 

Assembled 
chromosomes (bp) 

218,466,233 119,146,348 303,085,820 

Unanchored 
assembled 
sequences (bp) 

108,886,888 - 194,422,951 

GC content (%) 34.38   
    
Protein coding 
genes 

28,798 27,3791 30,434 

Mean gene size 
with UTR (bp) 

3,346 2,183 7,413 

Median gene size 
with UTR (bp) 

2,582 1,898 3,398 

Mean gene density 
per 100kb 

10.19 22.64 6.39 

    
Coding exons 144,998 138,883 149,351 
Mean coding exons 
per gene 

5.03 5.07 4.90 

Mean coding exon 
size (bp) 

231 237 224 

Median coding 
exon size (bp) 

133 133 129 

    
Mean intergenic 
region (bp) 

6,319 2,187 7,918 

Median intergenic 
region (bp) 

2,130 888 3,136 

1
 For gene comprising predicted alternative splice variants, the first (.1) representative 

has been selected. 
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Supplementary Table 9: Summary of gene family clustering. Description of clusters of 

orthologous (or paralogous) genes obtained after applying OrthoMCL. For BBMH (Best 

BLAST Mutual Hits), we report also the number of cocoa genes with a reciprocal best-hit 

relationship with the organism. Numbers in parentheses indicate the percent of BBMH with 

cocoa.  

 
 
Species # genes # genes after 

cdhit 

# genes in 

families 

# groups # groups  

specific 

# BBMH / cocoa 

T. cacao 28,801 28,219 18,595 12,954 682  

A. thaliana 33,200 26,809 20,672 12,103 1047 13,086 (46,4%) 

V. vinifera 21,189 19,919 12,565 9,363 247 11,245 (39,8%) 

P. trichocarpa 45,778 36,348 24,374 13,419 960 15,156 (53,7%) 

G. max 55,787 36,112 27,374 13,152 1148 14,051 (49,8%) 

Total 184,755 147,407 103,580 18,154   
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Supplementary Table 10: miRNA families found in Theobroma cacao. 

 

miRNA family
Number of 

paralogous loci

Number of plant species 

where also found
List of species

156 7 17 aqc, ath, bdi, bna, ghr, gma, mtr, osa, ppt, pta, ptc, sbi, sly, smo, sof, vvi, zma

160 3 15 aqc, ath, bdi, bra, gma, mtr, osa, ppt, ptc, sbi, sly, smo, tae, vvi, zma

162 1 10 ath, cpa, ghr, gma, mtr, osa, ptc, sly, vvi, zma

164 3 11 ath, bna, bra, gma, mtr, osa, ptc, sbi, tae, vvi, zma

166 4 17 aqc, ath, bdi, bna, ghr, gma, mtr, osa, ppt, pta, ptc, pvu, sbi, sly, smo, vvi, zma

167 3 17 aqc, ath, bdi, bna, bra, gma, lja, mtr, osa, ppt, ptc, sbi, sly, sof, tae, vvi, zma

168 1 11 aqc, ath, bna, gma, mtr, osa, ptc, sbi, sof, vvi, zma

169 14 13 aqc, ath, bdi, bna, ghb, gma, mtr, osa, ptc, sbi, sly, vvi, zma

171 8 18 aqc, ath, bdi, bna, bol, bra, gma, mtr, osa, ppt, pta, ptc, sbi, sly, smo, tae, vvi, zma

172 5 13 aqc, ath, bdi, bol, bra, gma, mtr, osa, ptc, sbi, sly, vvi, zma

319 1 14 aqc, ath, gma, mtr, osa, ppt, pta, ptc, pvu, sbi, sly, smo, vvi, zma

390 2 11 ath, bna, ghr, gma, mtr, osa, ppt, pta, ptc, sbi, vvi

393 2 9 ath, bna, gma, mtr, osa, ptc, sbi, vvi, zma

394 2 6 ath, osa, ptc, sbi, vvi, zma

395 2 10 aqc, ath, mtr, osa, ppt, ptc, sbi, sly, vvi, zma

396 5 15 aqc, ath, bna, ghr, gma, lja, mtr, osa, pta, ptc, sbi, smo, sof, vvi, zma

397 1 8 ath, bdi, bna, osa, ptc, sbi, sly, vvi

398 2 9 aqc, ath, bol, gma, mtr, osa, pta, ptc, vvi

399 9 14 aqc, ath, bdi, bna, ghr, mtr, osa, ptc, pvu, sbi, sly, tae, vvi, zma

403 2 3 ath, ptc, vvi

529 1 4 aqc, osa, ppt, sbi

530 2 3 aqc, osa, ptc

535 1 4 aqc, osa, ppt, vvi

827 1 3 ath, osa, ptc

2111 1 2 ath, bna

aqc: Aquilegia coerulea,  ath: Arabidopsis thaliana , bdi: Brachypodium distachyon , bna: Brassica napus , bol: Brassica oleracea , bra: Brassica 

rapa , cpa: Carica papaya , ghb: Gossypium herbecium , ghr: Gossypium hirsutum , gma: Glycine max , lja: Lotus japonicus , mtr: Medicago 

truncatula , osa: Oryza sativa , ppt: Physcomitrella patens , pta: Pinus taeda , ptc: Populus trichocarpa , pvu: Phaseolus vulgaris , sbi: Sorghum 

bicolor , sly: Solanum lycopersicum , smo: Selaginella moellendorffii , sof: Saccharum officinarum , tae: Triticum aestivum , vvi: Vitis vinifera , zma: 

Zea mays
 

 

 

 

 

 

Supplementary Table 11. Gene ontology (GO) annotation of cacao miRNA target 

homologs in A. thaliana. Terms in bold indicates the most significant enrichment in each GO 

category 

 

term ontology category

gene number of 

cacao miRNA 

target homologs 

in A. thaliana 

(total 67)

gene number in 

A. thaliana 

genome (total 

34278)

p-value

Nucleus cellular component 24 2609 6,97E-12

Extracellular cellular component 7 441 2,37E-06

Transcription factor activity molecular function 23 1679 3,93E-15

Other enzyme activity molecular function 17 3345 5,30E-05

DNA or RNA binding molecular function 14 2714 1,93E-04

Transporter activity molecular function 7 1242 2,85E-03

Developmental processes biological process 24 2006 2,01E-14

Transcription biological process 20 1709 5,67E-12

Other cellular processes biological process 43 10140 1,08E-09

Other metabolic processes biological process 41 9410 1,77E-09

Other biological processes biological process 12 1913 7,32E-05  
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Supplementary Table 12. Number of LRR-RLK genes (or orthologous genes) in each of 

the 19 subfamilies in Arabidopsis thaliana (At), Theobroma cacao (Tc) and Populus 

trichocarpa (Pt).  

 

 

Subfamily At Tc Pt* 

LRR-I 44 12 19 

LRR-II 14 10 20 

LRR-III 46 37 63 

LRR-IV 3 3 8 

LRR-V 9 6 11 

LRR-VI-1 5 5 7 

LRR-VI-2 5 4 10 

LRR-VII 8 6 12 

LRR-VIII-1 8 7 15 

LRR-VIII-2 12 19 50 

LRR-IX 4 5 12 

LRR-Xa 7 7 25 

LRR-Xb 6 5 22 

LRR-XI 32 54 54 

LRR-XII 8 63 90 

LRR-XIIIa 3 2 4 

LRR-XIIIb 3 2 4 

LRR-XIV 2 2 6 

LRR-XV 2 4 4 

Total 221 253 436 

*From Lehti-Shiu et al. 2009  
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Supplementary Table 13. Classification of Theobroma cacao orthologous genes into one 

of the 19 LRR-RLK subfamilies. If available, one representative member of Arabidopsis 

thaliana gene is cited per subfamily. 

 

 

 

Subfamily T. cacao accession numbers 

Arabidopsis gene names of 

one representative 

member per subfamily 

LRR-I 

Tc00g002950 Tc00g003020 Tc00g042320 Tc00g002900 

Tc06g007080* Tc06g007100* Tc06g007020* Tc09g008480 

Tc02g025930 Tc05g005850 Tc01g007500 Tc01g022480  

LRRPK (light-repressible 

receptor protein kinase) 

LRR-II 

Tc00g050290 Tc02g012140 Tc01g008780 Tc01g013050 

Tc02g030940 Tc04g015680 Tc02g030920 Tc09g014280 

Tc02g024160 Tc06g014110  

AtSERK1 (SOMATIC 

EMBRYOGENESIS 

RECEPTOR-LIKE 

KINASE 1) 

LRR-III 

Tc01g005680 Tc02g009430 Tc05g018150 Tc02g026770 
Tc04g013850 Tc02g019380 Tc02g020570 Tc09g004910 

Tc05g008010 Tc09g010460 Tc00g057690 Tc03g006900 

Tc04g016010 Tc09g035300 Tc10g016710 Tc03g028420 

Tc03g017680 Tc09g006650 Tc06g010180 Tc06g005910 

Tc00g034880 Tc09g000010 Tc02g011910 Tc03g000770 

Tc04g000610 Tc07g002050 Tc02g030240 Tc08g000060 

Tc01g005520 Tc01g022920 Tc05g001620 Tc10g000820 

Tc06g000470 Tc09g033140 Tc01g009920 Tc08g003050 

Tc01g002030  

  

LRR-IV Tc01g037760 Tc03g018540 Tc03g025890    

LRR-V 
Tc06g010890 Tc00g016770 Tc06g019780 Tc00g090980 

Tc06g016520 Tc00g028150  
SCM-SUB 

LRR-VI-1 
Tc04g002970 Tc03g014610 Tc02g033910 Tc05g023650 

Tc10g010660  
  

LRR-VI-2 Tc03g027220 Tc06g014220 Tc09g034340 Tc10g001090    

LRR-VII 
Tc09g002810 Tc06g014170 Tc03g026200 Tc04g018460 

Tc00g061270 Tc04g016210  
  

LRR-VIII-1 
Tc04g015880 Tc09g035330 Tc04g015890 Tc00g020540 

Tc00g006550 Tc00g031660 Tc00g031610  
  

LRR-VIII-2 

Tc06g013680 Tc06g013690 Tc06g013660 Tc06g013650 

Tc06g013700 Tc06g013710 Tc01g014070 Tc07g010630 

Tc07g010680 Tc07g010700 Tc07g010770 Tc07g010730 

Tc06g013640 Tc07g014090 Tc06g011190 Tc06g011240 
Tc06g011260 Tc06g011210 Tc06g011180  

  

LRR-IX 
Tc02g029860 Tc04g005810 Tc04g020290 Tc00g005590 

Tc00g012460  
  

LRR-Xa Tc00g075310 Tc04g008190 Tc00g054780 Tc01g020480  
BIR1 (BAK1-interacting 

like kinase 1) 

LRR-Xb 
Tc03g010530 Tc07g000200 Tc01g010390 Tc02g029320 

Tc03g019480 Tc00g055300 Tc02g030270 Tc07g008390  

BRI1 

(BRASSINOSTEROID 

INSENSITIVE 1) 
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Supplementary Table 13. (continued) 

 

 

LRR-XI 

Tc02g000140 Tc01g026140 Tc05g025870 Tc03g017040 Tc08g003840 

Tc01g007220 Tc02g000040 Tc02g001640 Tc07g000640 Tc03g002110 

Tc04g021800 Tc01g022970 Tc00g052790 Tc06g017670 Tc05g025560 

Tc04g021990 Tc02g002570 Tc08g006630 Tc08g006640 Tc08g015570 

Tc06g015260 Tc02g016020 Tc01g007200 Tc09g008880 Tc09g008890 

Tc09g004330 Tc05g018030 Tc08g014220 Tc05g016360 Tc06g002650 
Tc03g021590 Tc01g025700 Tc01g025760 Tc10g014070 Tc10g014090 

Tc10g014230 Tc00g040550 Tc08g012170 Tc00g061190 Tc00g040450 

Tc00g040530 Tc00g040440 Tc00g040490 Tc09g002700 Tc09g002720 

Tc08g009140 Tc04g026560 Tc08g009130 Tc03g017130 Tc00g007810 

Tc01g038750 Tc01g038760 Tc01g038730 Tc01g038770  

CLV1 (CLAVATA 1) 

LRR-XII 

Tc06g013030 Tc10g001680* Tc05g004050* Tc08g007960* 

Tc09g014550* Tc06g004870* Tc06g004910* Tc03g016440* 

Tc03g016460* Tc07g009880* Tc00g035980* Tc00g075630* 

Tc00g001540* Tc00g004260* Tc06g000790* Tc06g013970* 

Tc06g014130* Tc00g058390* Tc00g081090* Tc07g010620* 

Tc07g010550* Tc07g010600* Tc07g010590* Tc07g010520* 

Tc07g011460* Tc00g080960* Tc00g081000* Tc00g062690* 

Tc00g058340* Tc00g050640* Tc00g081210* Tc00g081080* 

Tc00g081100* Tc00g081190* Tc00g050580* Tc00g062650* 

Tc00g081070* Tc00g058300* Tc00g050570* Tc10g008830* 

Tc07g004700* Tc04g022010 Tc04g022030 Tc04g022000 
Tc10g001940 Tc10g001600 Tc10g001950 Tc10g001590 Tc10g001980 

Tc10g001970 Tc10g001930 Tc10g001610 Tc05g026830 Tc10g001660 

Tc10g011300 Tc05g016100 Tc05g022420 Tc10g001670 Tc04g015500 

Tc05g002710 Tc09g030110 Tc05g002730 Tc10g001630  

FLS2 (FLAGELLIN-

SENSITIVE 2) 

LRR-XIIIa Tc03g031220 Tc03g009500  
FEI1 (named for the 

Chinese word for fat) 

LRR-XIIIb Tc09g005700 Tc03g018800  ER (ERECTA) 

LRR-XIV Tc02g006980 Tc08g002130    

LRR-XV Tc02g032000 Tc04g010660 Tc01g033210 Tc04g005310  TOAD2-RPK2 

unclassified 
Tc09g003290 Tc09g004160 Tc03g013850 Tc01g040010 Tc04g017660 

Tc00g086930  
EVR (EVERSHED) 

* putative member (unsupported by bootstrap value)  
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Supplementary Table 14: Numbers of orthologous genes found in Theobroma cacao (Tc), 

Populus trichocarpa (Pt), Vitis vinifera (Vv), Medicago truncatula (Mt), and number of 

genes in Arabidopsis thaliana (At) that encode NBS domains similar to those in plant R 

proteins. 
 

 

 Tc Pt Vv Mt At 

TIR-NBS-LRR 8 78 97 118 93 

CC-NBS-LRR 82 120 203 152 51 

NBS-LRR 104 132 159 - 3 

NBS 53 62 36 328 1 

CC-NBS 46 14 26 25 5 

TIR-NBS 4 10 14 38 21 

Total NBS-LRRgenes 194 330 459 - 147 

Total NBS genes 297 416 535 661 174 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nature Genetics: doi: 10.1038/ng.736



33 

 

Supplementary Table 15. List of Theobroma cacao genes orthologous to encoding key 

enzymes in the storage lipid biosynthesis pathway. Gene copy numbers and full length 

protein sequences for Arabidopsis were obtained from the Arabidopsis Lipid Gene Database 

(Mekhedov) (http://lipids.plantbiology.msu.edu/). Full length Arabidopsis protein sequences 

from all 67 Arabidopsis genes in the database were used to query the T. cacao assembly V1.0 

genome database using the TBLASTN program. An E-value cutoff of 1*e
-24

 was used for all 

genes except for the acyl carrier protein gene family, for which an e-value cutoff of 1*e
-12

 was 

used because of its short length (137 amino acids). For enzymes with multiple gene copies in 

Arabidopsis, full length protein sequences of each copy were used to query the cacao genome 

and a non-redundant set of all hits was listed. Standard gene designation (Gene), enzyme 

activity (Enzyme), Gene copy numbers and locus numbers for each predicted cacao gene in 

the T. cacao assembly V1.0 genome database are indicated.  
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Supplementary Table 16: List of Theobroma cacao genes orthologous to genes encoding 

key enzymes of the flavonoid biosynthesis pathway. Gene copy numbers were determined 

using the BLASTP program with full-length protein sequences obtained from the loci listed in 

Supplementary Table 15 as queries. For V. vinifera (grape), P. trichocarpa (poplar) and A. 

thaliana the Phytozome database (http://www.phytozome.net) was queried. For cacao the T. 

cacao assembly V1.0 database was queried. Standard gene designation (Gene), locus used to 

obtain protein sequences for Blast searches (Query), enzyme activity (Enzyme), gene copy 

numbers followed by e-value cutoff (highest e-value accepted), and locus numbers for each 

predicted cacao gene in T. cacao assembly V1.0 database are indicated. For the chalcone and 

stilbene synthase enzymes, it was not possible to distinguish gene function using sequence 

data alone, so the genes were grouped into one family. 
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Supplementary Table 17. Classification of Theobroma cacao orthologous genes into the 13 

terpenoïd-encoding gene subfamilies. 
FPPS, farnesyl diphosphate synthase; GGPPS, geranylgeranyl diphosphate synthase; GPPS, geranyl 

diphosphate synthase; SQS squalene synthase; PSY, phytoene synthase; HMGS, HMG-CoA synthase; 

 

 

 

SUBFAMILY T. CACAO ACCESSION NUMBERS 
Compound 

class 

GPPS Tc07g003160, Tc09g029280 Monoterpene 

limonene synthase Tc00g044690, Tc06g017940, Tc07g016360, Tc07g016390 Monoterpene 

linalool synthase 
Tc06g016360, Tc06g016370, Tc06g016390, Tc06g017500, 

Tc06g017520, Tc06g017530, Tc06g017930 
Monoterpene 

myrcene synthase 
Tc00g016370, Tc00g033730, Tc03g027710, Tc03g027720, 

Tc06g017980 
Monoterpene 

ocimene synthase Tc06g017510, Tc06g017920 Monoterpene 

pinene synthase Tc00g007730, Tc00g012940, Tc00g033760 Monoterpene 

FPPS Tc06g021060, Tc07g000710 Sesquiterpene 

Germacrene-D 

synthase 

Tc00g085410, Tc07g005070, Tc07g005280, Tc07g005390, 

Tc07g016300 
Sesquiterpene 

Cadinene synthase 
Tc00g033820, Tc00g067420, Tc04g011420, Tc07g005080, 
Tc07g005290, Tc07g005310, Tc07g005320, Tc07g005310, 

Tc07g005330,      Tc07g005340,     Tc07g005350 

Sesquiterpene 

GGPPS 
Tc00g085980, Tc01g003740, Tc02g004290, Tc04g014990, 

Tc04g015000, Tc06g012170, Tc06g012180 

Diterpene, 

Phytoene,  

Casbene synthase Tc00g044710, Tc00g054380 Diterpene 

PSY Tc00g029810, Tc00g062310, Tc01g015090, Tc03g025560 Phytoene 

SQS Tc02g007320, Tc02g007330, Tc02g007380 Triterpene 
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Supplementary Table 18. T. cacao genome synteny, The table illustrates the synteny 

relationships (lines) identified between the T. cacao (first column, number of genes in 

parenthesis) and Arabidopsis, poplar, grape, soybean and papaya chromosomes (second 

column). The number of orthologous genes per chromosomes is shown in parenthesis. 

 
Cacao chromosome Arabidopsis chromosome

C1(1321) A1(63)-A2(85)-A3(69)-A4(116)-A5(64)

C2(935) A1(89)-A2(30)-A4(61)-A5(10)

C3(1018) A1(70)-A3(17)-A4(63)-A5(130)

C4(837) A1(21)-A2(9)-A3(94)-A4(36)-A5(44)

C5(820) A1(24)-A2(51)-A3(78)-A5(37)

C6(616) A1(59)-A2(15)-A4(66)-A5(26)

C7(287) A1(5)-A5(32)

C8(605) A1(67)-A4(10)-A5(5)

C9(1137) A1(17)-A2(95)-A3(22)-A4(72)-A5(76)

C10(290) A2(23)-A3(14)

Cacao chromosome Poplar chromosome

C1(1321) P14(164)-P19(6)-P1(6)-P2(120)-P3(18)-P4(6)-P5(66)-P7(124)-P11(5)-P9(8)

C2(935) P1(20)-P3(13)-P4(24)-P5(9)-P7(27)-P8(48)-P9(77)-P10(88)-P13(21)-P17(11)

C3(1018) P3(120)-P4(13)-P11(3)-P12(109)-P15(87)-P1(31)

C4(837) P1(103)-P2(19)-P4(22)-P7(33)-P8(48)-P10(94)-P11(2)-P14(14)-P16(14)-P17(36)-P19(5)

C5(820) P4(3)-P6(77)-P13(142)-P16(88)-P19(25)

C6(616) P1(27)-P3(34)-P4(92)-P6(15)-P8(3)-P11(79)-P13(1)-P15(11)

C7(287) P1(59)-P11(60)-P13(13)

C8(605) P2(147)-P5(64)-P6(2)-P13(1)-P14(9)-P19(34)

C9(1137) P1(49)-P3(7)-P4(5)-P6(129)-P9(115)-P13(6)-P18(150)-P19(6)

C10(290) P10(54)-P19(10)-P1(8)-P8(34)

Cacao chromosome Grape chromosome

C1(1321) G12(99)-G13(32)-G2(12)-G3(1)-G15(119)-G4(118)-G5(2)-G6(6)-G7(325)-G18(10)

C2(935) G10(16)-G12(69)-G1(218)-G3(151)

C3(1018) G2(244)-G16(54)-G17(256)-G8(1)

C4(837) G1(1)-G5(328)-G14(181)-G8(23)

C5(820) G4(18)-G5(7)-G14(111)-G8(336)-G16(18)

C6(616) G1(11)-G10(109)-G12(11)-G9(120)-G19(6)

C7(287) G18(1)-G19(183)

C8(605) G18(381)

C9(1137) G3(21)-G4(186)-G6(268)-G11(235)-G13(4)

C10(290) G11(2)-G13(178)

Cacao chromosome Soybean chromosome

C1(1321) S10(12)-S11(5)-S13(5)-S14(13)-S16(12)-S18(7)-S19(14)-S1(16)-S2(19)-S3(32)-S4(6)-S5(13)-S6(12)-S7(8)-S8(19)-S9(3)

C2(935) S20(8)-S1(7)-S2(20)-S4(5)-S8(29)-S10(6)-S11(9)-S12(12)-S13(6)-S14(4)

C3(1018) S11(15)-S17(17)-S20(10)-S1(12)-S4(12)-S5(21)-S6(13)-S7(6)-S8(7)-S9(17)

C4(837) S20(11)-S1(3)-S2(2)-S5(11)-S7(7)-S8(10)-S9(10)-S10(6)-S11(1)-S13(8)-S15(10)-S16(17)-S17(7)-S18(6)-S19(11)

C5(820) S10(24)-S11(1)-S13(8)-S16(1)-S19(26)-S20(13)-S3(25)-S7(8)

C6(616) S13(23)-S15(20)-S1(1)-S5(6)-S7(23)-S8(16)-S9(5)

C7(287) S13(15)-S14(3)-S2(5)-S6(6)-S8(5)

C8(605) S14(17)-S17(9)-S4(16)-S6(39)

C9(1137) S4(10)-S6(14)-S11(11)-S12(10)-S13(16)-S14(3)-S15(5)-S17(25)-S18(9)

C10(290) S20(11)-S10(12)-S13(5)

Cacao chromosome Papaya chromosome

C1(1321) Py2(202)-Py3(49)-Py4(33)-Py5(176)-Py6(171)-Py8(1)

C2(935) Py3(214)-Py4(54)-Py5(23)-Py6(24)-Py8(8)-Py9(169)

C3(1018) Py2(127)-Py3(11)-Py5(1)-Py6(16)-Py8(366)

C4(837) Py1(64)-Py3(13)-Py5(65)-Py6(175)

C5(820) Py3(77)-Py4(233)-Py6(78)-Py9(1)

C6(616) Py1(3)-Py2(42)-Py5(26)-Py7(150)-Py8(54)-Py9(24)

C7(287) Py2(162)-Py5(5)-Py9(7)

C8(605) Py1(316)-Py2(8)

C9(1137) Py9(136)-Py2(7)-Py3(36)-Py5(32)-Py6(43)-Py7(280)

C10(290) Py4(15)-Py9(139)  
 

 

 

Nature Genetics: doi: 10.1038/ng.736



37 

 

Supplementary Table 19. T. cacao genome duplication. The table illustrates seven ancestral 

duplications identified in the T. cacao genome. The duplicated blocks (1 to 3) are mentioned 

in columns and the start/end position on the corresponding chromosomes  

 

 
 Block1 Block2 Block3 

 chromosome start end chromosome start end chromosome start end 

duplication1 c2 12716774 27462648 c3 208385 16091087 c4 349021 14314443 

duplication2 c1 27207631 30674661 c3 16741484 24212437 c3 16741484 24212437 

duplication3 c1 315357 7988483 c2 1350572 7237080 c8 43353 6712481 

duplication4 c6 1071819 9467758 c9 739576 9589803 c9 739576 9589803 

duplication5 c1 21083375 26683534 c4 18966341 23343107 c5 23329957 25395907 

duplication6 c5 541440 5362779 c9 23851693 28019603 c10 333882 12953021 

duplication7 c1 8722499 15224371 c6 10864133 14795052 c7 511932 6542889 

 

Nature Genetics: doi: 10.1038/ng.736



38 

 

Supplementary Figures 
 
Supplementary Fig. 1. BAC clone inserts from two Theobroma cacao BAC libraries. A. 

BAC library TC_CBa composed of HindIII restricted fragments. B. BAC library TC_CBb 

composed of EcoRI restricted fragments. Plasmid BAC DNA was restricted with NotI 

enzyme and subjected to Pulsed Field Gel Electrophoresis (PFGE). Molecular size standards 

are indicated. 
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Supplementary Fig. 2. Histograms showing the frequency distribution of insert sizes in 

the two Theobroma BAC libraries. A. HindIII BAC library (TC_CBa); 135kbp average 

insert size. B. EcoRI BAC library (TC_CBb); 137kbp average insert size. 
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Supplementary Fig. 3. Map of the sequence scaffolds along the genetic map. Scaffolds 

that constitute the pseudomolecules (PM) are linked to the cocoa linkage groups (LG). At 

least one informative marker per scaffold has been represented in the figure. Scaffolds are 

represented on the right as colored bars (oriented) or as grey bars (random orientation). 
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Supplementary Fig. 4. Southern blot hybridizations with probes from Gaucho and 

ThCen repeated sequences. Two micrograms of genomic DNA from cocoa genotypes (black 

type) and from representatives of related species or Herrania of Theobroma (red type) were 

digested with Hind III and separated on a 0.8% agarose gel. Each blot was probed 

individually with a Gaucho and ThCen repeat probe, as indicated in Supplementary Note. 
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Supplementary Fig. 5. Structural and functional annotation workflow. Gene model 

predictions were produced using the integrative gene prediction platform EuGene
33

 with 

statistical models trained for T. cacao. Translation starts and splice sites were predicted by 

SpliceMachine
101

. Available T. cacao ESTs were aligned on the genome using 

GenomeThreader
34

. Similarities to proteins from several datasets were searched using NCBI 

BLASTX
27

 Similarities to A. thaliana, Gossypium, V. vinifera, Citrus and T. cacao ESTs 

were searched using NCBI TBLASTX. For each predicted coding sequence, we performed 

several analyses (BLASTP, InterProScan, BBMH) to transfer functional annotations. Then, 

we extracted for each gene model (n) a genomic region between the end of the gene preceding 

(n–1) and the beginning of the next gene (n+1) and we ran GenomeThreader and BLASTX to 

improve the structure of the gene if necessary. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Nature Genetics: doi: 10.1038/ng.736



45 

 

Supplementary Fig. 6. Distribution of Gene Ontology terms for Theobroma cacao, Vitis vinifera, Arabidopsis thaliana, Populus 

trichocarpa and Glycine max genes. 
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Supplementary Fig. 7. Distribution of Gene Ontology terms for genes contained in (A) common and (B) specific cluster families  
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Supplementary Fig. 8. Number of miRNAs in each plant species in miRBase 14 and 

Theobroma cacao in relation to genome size. All plant species with more than 45 miRNAs 

in miRBase 14 and a known genome size (NCBI 

http://www.ncbi.nlm.nih.gov/genomeprj/?term=txid33090[Organism%3Aexp]) are plotted. 

No obvious correlation of miRNA population and genome size is observed. The high 

variation in the number of miRNAs among the different species is mostly due to different 

discovery methods (prediction only versus experimental confirmation) or different levels of 

stringency of the prediction. 

ath: Arabidopsis thaliana, bna: Brassica napus, cre: Chlamydomonas reinhardtii, gma: 

Glycine max, mtr: Medicago truncatula, osa: Oryza sativa, ppt: Physcomitrella patens, ptc: 

Populus trichocarpa, sbi: Sorghum bicolor, smo: Selaginella moellendorffii, tcc: Theobroma 

cacao, vvi: Vitis vinifera, zma: Zea mays. 
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Supplementary Fig. 9. Cumulative distributions of the number of loci per miRNA family 

in T. cacao and A. thaliana. tcc: T. cacao, ath: A. thaliana, athMC: A. thaliana more 

conserved families. 
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 49 

Supplementary Fig. 10: NBS motifs of predicted cocoa genes orthologous to NBS-encoding genes. The visualization of multiple alignments 

of NBS motifs was monitored with Jalview software (http://www.jaview.org/). Conserved consensus sequences are highlighted in blue, with the 

blue intensity proportional to the % identity.  
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 52 

 

 

Supplementary Fig. 11: Phylogenetic tree based on NBS domains from non-TIR-NBS 

orthologous genes. According to Meyers et al, 2003
72

: the red box represents the CNL-B 

class (AT4G26090, AT1G12220); purple box, CNL-A/C/D class (AT3G07040, AT3G46530, 

AT5G43470, AT4G33300); blue box, NL-A class (AT5G45510). Three subclasses are 

specific to T. cacao: yellow box, CNL/NL/N class; green box, N class; and orange box, NL 

class.  
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 54 

Supplementary Fig. 12. Phylogenetic analysis of the T. cacao NON-EXPRESSOR OF 

PATHOGENESIS-RELATED 1 (NPR1) gene orthologous family. Full length protein 

sequences of all six Arabidopsis NPR1 gene family members were used to search the T. cacao 

genome assembly V1.0 database using the TBLASTN
27

 program with an E-value cutoff of 

1*e-
40

. Four cacao genes were identified with e-values below 5*e-
41

. The next closest hit had 

an e-value of 1*e
-15

 and was not considered a bona fide NPR1 family member. Using the 

TBLASTN program, a full length protein sequence of Arabidopsis NPR1 was used to search 

the Phytozome database (http://www.phytozome.net/) to obtain NPR-like genes from poplar, 

Medicago and grape (e-value cutoff of 1*e
-20

). Six NPR1 family member genes were 

identified in P. trichocarpa (Poplar), four in M. truncatula (medicago) and three in V. vinifera 

(grape). Multiple DNA alignment of 23 NPR genes from five species was carried out using 

MUSCLE
102

 software. The phylogenetic tree was constructed with MEGA 4.0
103

 software 

using the neighbor-joining method with the option of pairwise deletion. Gene locus IDs are 

included; bootstrap values are indicated next to each node and were obtained from 2000 

replicates. A scale bar indicating a rate of 0.1 base pair substitutions per site is indicated at the 

bottom. Three subfamilies of NPR1 genes are designated with brackets on the right. 
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Supplementary Fig. 13. Mapping of genes orthologous to NBS, LRR-LRK and NPR1-

like genes on pseudomolecules (PM) and comparative genome localisations with QTLs 

related to disease resistance identified on T. cacao. Orthologs of NBS-LRR (purple bars), 

NBS not LRR (yellow bars), LRR-LRK (red bars ) and NPR1-like (green bars) genes are 

represented to the left of the pseudomolecules. QTLs, represented by triangles, are positioned 

to the right of the linkage groups (LG) as described by Lanaud et al., (2009)
93

: green triangles 

correspond to Phytophthora resistance, red triangles correspond to consensus QTLs 

correspond to Phytophthora resistance identified by meta-analyses, blue triangles correspond 

to Witches’broom disease due to Moniliphthora perniciosa, and purple triangles correspond 

to QTLs related to frosty pod due to Moniliphthora roreri. 
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Supplementary Fig. 14. Metabolic pathway for storage lipid biosynthesis adapted from 

Baud et al., 2010
104

. Orthologous gene copy number for each enzyme in T. cacao were 

determined as described in Supplementary Table 15. Enzymes involved the pathway are listed 

based on their sequential order and their compartmentalization in plastid and ER. Orthologous 

gene copy number in T. cacao are indicated in parentheses beside each enzyme abbreviation: 

CAC2, Heteromeric acetyl-CoA carboxylase BC subunit; BCCP, Heteromeric acetyl-CoA 

carboxylase BCCP subunit; CAC3, Heteromeric acetyl-CoA carboxylase alpha-CT subunit; 

ACCD, Heteromeric acetyl-CoA carboxylase beta-CT subunit; ACP: Acyl-carrier protein; 

CoA: coenzyme A; MAT, Plastidial malonyl-CoA : ACP malonyltransferase; KAS, Ketoacyl-

ACP synthase; KAR, Plastidial ketoacyl-ACP reductase; HAD, Plastidial hydroxyacyl-ACP 

dehydrase; ENR1, Plastidial enoyl-ACP reductase; FAB2, Stearoyl-ACP desaturase; FATA, 

Acyl-ACP thioesterase; FATB, Acyl-ACP thioesterase;LACS, Long-chain acyl-CoA 

synthetase; FAD2, ER oleate desaturase; FAD3, ER linoleate desaturase; KCS, β-Ketoacyl-

CoA synthase; KCR, Ketoacyl-CoA reductase; HCD, Hydroxyacyl-CoA dehydrase; ECR, 

Enoyl-CoA reductase; HmACCase, Homomeric acetyl-CoA carboxylase; LPCAT, 

Lysophosphatidylcholine acyltransferase (copy number was not determined for cacao); G3P, 

Glycerol-3-phosphate; TAG: Triacylglycerol. CAC2, BCCP, CAC3, and ACCD are the four 

subunits of ACCase in the plastid. Dashed arrows indicate the four-step elongation cycles 

catalyzed by KAS, KAR, HAD and ENR1, which is repeated multiple times during chain 

elongation. 
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Supplementary Fig. 15. Metabolic pathway for flavonoid biosynthesis adapted from 

Lepiniec, L. et al., 2006
105

. T. cacao orthologous gene copy numbers for each enzyme were 

determined as described in Supplementary Table 16. Enzymes involved in the pathway are 

listed in sequential order (top to bottom): PAL, phenylalanine ammonia-lyase; C4H, 

cinnamate 4-hydroxylase; 4CL, 4-coumarate-CoA ligase; CHS, chalcone synthase; AS, 

aureusidin synthase; CHI, chalcone isomerase; FS1/FS2, flavone synthase (copy number was 

not determined for cacao); F3H, flavanone 3-hydroxylase; F3'H, flavonoid 3′-hydroxylase; 

F3'5'H, flavonoid 3′,5′-hydroxylase; FLS, flavonol synthase; DFR, dihydroflavonol 4-

reductase; LDOX (ANS), leucoanthocyanidin dioxygenase; LAR, leucoanthocyanidin 

reductase; ANR, anthocyanidin reductase; OMT, O-methyltransferase; UFGT, UDP-

glucose:flavonoid 3-O-glucosyltransferase; RT, rhamnosyl transferase (copy number was not 

determined for cacao); C/EC refers to catechins/epicatechins, PPO refers to polyphenol 

oxydase. 
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Supplementary Fig. 16. Mapping of lipid, flavonoid and terpenoid orthologs on 

pseudomolecules (PM) and comparative genome localizations with QTLs for related 

traits identified in T. cacao. QTLs, represented by triangles are positioned to the right of the 

linkage groups (LG) and correspond to butter fat content (yellow) and hardness (orange), 

procyanidin content (purple, EPI : epicathechin, B2, B5 : procyanidin dimer, C1 : procyanidin 

trimer), cocoa organs color (light purple, C : cotyledon, L : leaf, S : staminode, P : sepal, 

F :fruit) and to chocolate astringency (green). Lipid (orange bars), flavonol (purple bars) and 

terpene synthase (green bars) orthologs are represented to the left of the pseudomolecules. 
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Supplementary Fig. 17. Metabolic pathway for isoprenoid biosynthesis adapted from 

Liu et al., (2005)
106

. T. cacao orthologous gene copy numbers for each enzyme that was 

determined, as described in Supplementary Table 17, are shown in parentheses beside each 

enzyme abbreviations: 
AACT, acetoacetyl-coenzyme A (CoA) thiolase; CMS, 2-C-methyl-D-erythritol 4-phosphate cytidyl transferase; 

DTS, diterpene synthase; DXR, 1-deoxy-D-xylulose 5-phosphate reductoisomerase; DXS, 1-deoxy-D-xylulose 

5-phosphate synthase; FPPS, farnesyl diphosphate synthase; GGPPS, geranylgeranyl diphosphate synthase; 

GPPS, geranyl diphosphate synthase; HMGR, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) 

reductase; IPPi, isopentenyl diphosphate isomerase; MTS, monoterpene synthase; SES, sesquiterpene synthase; 

SQS squalene synthase; MK, mevalonate kinase; MPK, mevalonate-5-phosphate kinase; CMK, 4-(cytidine 5'-

diphospho)-2-C-methyl-D-erythritol kinase; MDD, mevalonate diphosphate decarboxylase; IDS, isopentenyl 

diphosphate/dimethylallyl diphosphate synthase; MCS, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; 

HDS, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase; PSY, phytoene synthase; HMGS, HMG-CoA 

synthase; 

 
HMG-CoA, 3S-hydroxy-3-methylglutaryl coenzyme A; DXP, 1-deoxy-D-xylulose 5-phosphate; MVA, 3R-

mevalonic acid; MEP, 2-C-methyl-D-erythritol 4-phosphate; CDP-ME, 4-(cytidine 5'-diphospho)-2C-methyl-

D-erythritol; CDP-MEP, 4-(cytidine 5'-diphospho)-2C-methyl-D-erythritol 2-phosphate; cMEPP, 2C-methyl-

D-erythritol 2,4-cyclodiphosphate; DMAPP, Dimethylallyl diphosphate; HMBPP, 1-hydroxy-2-methyl-2-(E)-

butenyl 4-diphosphate; IPP, isopentenyl diphosphate; GPP, geranyl diphosphate; FPP, farnesyl diphosphate; 

GGPP, geranylgeranyl diphosphate. 
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Supplementary Fig. 18. Dating of the T. cacao genome duplications. The distribution of 

Ks distance values observed for the paralogous gene pairs identified for the T.cacao, grape, 

poplar, Arabidopsis, soybean genomes are illustrated with bars as number of duplicated gene 

pairs (y-axis) per Ks values (x-axis) intervals from 0 to 3. The distinct rounds of whole 

genome duplication (α, β, γ,) reported for the eudicot genome paleohistory are highlighted in 

red. The red vertical line represent the separation between lineage specific WGD (left) and 

shared paleo-WGD (right). 
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