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Abstract
Key message  Key genes potentially involved in cacao disease resistance were identified by transcriptomic analysis 
ofimportant cacao cultivars. Defense gene polymorphisms were identified which could contribute topathogen recog-
nition capacity.
Abstract  Cacao suffers significant annual losses to the water mold Phytophthora spp. (Oomycetes). In West Africa, P. mega-
karya poses a major threat to farmer livelihood and the stability of cocoa production. As part of a long-term goal to define 
key disease resistance genes in cacao, here we use a transcriptomic analysis of the disease-resistant cacao clone SCA6 and the 
susceptible clone NA32 to characterize basal differences in gene expression, early responses to infection, and polymorphisms 
in defense genes. Gene expression measurements by RNA-seq along a time course revealed the strongest transcriptomic 
response 24 h after inoculation in the resistant genotype. We observed strong regulation of several pathogenesis-related genes, 
pattern recognition receptors, and resistance genes, which could be critical for the ability of SCA6 to combat infection. These 
classes of genes also showed differences in basal expression between the two genotypes prior to infection, suggesting that 
prophylactic expression of defense-associated genes could contribute to SCA6’s broad-spectrum disease resistance. Finally, 
we analyzed polymorphism in a set of defense-associated receptors, identifying coding variants between SCA6 and NA32 
which could contribute to unique capacities for pathogen recognition. This work is an important step toward characterizing 
genetic differences underlying a successful defense response in cacao.
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Introduction

Theobroma cacao L., commonly referred to as cacao, is a 
tropical tree belonging to the Malvaceae family originating 
from the Amazon rainforest (Wood et al. 2008; Alverson 
et al. 1999; Motamayor et al. 2002). As the unique source 
of the main ingredients of chocolate, cacao is now cultivated 

throughout the tropics. About 70% of the world’s raw cocoa 
is supplied by West African countries where cacao is grown 
by smallholder farmers (Wessel and Quist-Wessel 2015). 
Export of dried cocoa beans makes up the largest agricul-
tural commodity contribution to foreign exchange earnings 
and gross domestic product for several producing countries 
(Wessel and Quist-Wessel 2015). Sustainability of small-
holder cocoa production are threatened by the effect of 
pests and diseases, which are estimated to ruin one-third of 
the world’s cocoa production annually (Wessel and Quist-
Wessel 2015; Ploetz 2016). In the largest exporting coun-
tries, such as Côte d’Ivoire and Ghana, prevalence of cacao 
disease can significantly impact the national economies. 
Globally, the most widespread disease is Phytophthora pod 
rot, also called black pod rot, caused by four species of Phy-
tophthora (Surujdeo-Maharaj et al. 2016). The most aggres-
sive of these species, P. megakarya, occurs only in West 
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Africa. In areas invaded by P. megakarya, pod losses can 
reach 80% of farm production if no disease control is applied 
(Nyassé et al. 1999; Bailey et al. 2016). Control of black 
pod is mainly achieved through the use of fungicides; how-
ever, application of large quantities of fungicides increase 
labor and input costs and can also produce toxic effects on 
humans, wildlife, and the environment. Therefore, breeding 
disease-resistant varieties is the most effective and economi-
cal method of controlling P. megakarya.

The majority of cacao cultivars grown worldwide are sus-
ceptible to Phytophthora infection (Eskes and Lanaud 2001). 
Although significant variation for genetic resistance has 
been observed in germplasm collections and breeding trials 
(Blaha and Lotodé 1976; Despreaux et al. 1989; Iwaro et al. 
2003; Thevenin et al. 2012), breeding and distribution of 
resistant varieties is a slow process requiring about 20 years. 
Conventional breeding methods are hampered by the long 
growth period of cacao, land requirement for large trials, 
and gene-environment interactions complicating measure-
ments of plant susceptibility. Over the past two decades, 
cacao breeders have turned to molecular methods to acceler-
ate crop improvement. A large number of QTLs related to 
traits of interest including resistance to Phytophthora spp. 
have been developed from controlled crosses (Crouzillat 
et al. 1996, 2000a, b; Lanaud et al. 1999, 2004; Motilal and 
Sounigo 2000; Clement et al. 2003; Flament et al. 2001; 
Risterucci et al. 2000, 2003; Queiroz et al. 2003, 2006; 
Brown et al. 2005, 2007; Faleiro et al. 2006; Fernandes 
et al. 2018) and a meta-QTL analysis examined overlap of 
regions predicted from many of these studies, identifying 
consensus QTL believed to be important in defense (Lanaud 
et al. 2009). Researchers have also applied association map-
ping strategies (Pugh 2005; Schnell et al. 2005; Marcano 
et al. 2007, 2009; Royaert et al. 2016). However, because of 
the relatively small size of mapping populations, QTL and 
associations identified by these studies typically comprise 
chromosomal regions containing thousands of genes and 
thus have limited resolution and utility for marker assisted 
selection breeding strategies. Molecular characterization of 
the defense response in other model and crop species offer 
insight into strategies for identifying genes of particular 
importance in the interactions of cacao with its pathogens.

The canonical plant defense response involves three 
stages of activity: recognition of the pathogen, signal 
transduction, and induction of antimicrobial proteins and 
chemicals. The recognition stage relies on extracellular 
receptor-like kinases (RLKs) and receptor-like proteins 
(RLPs) which detect pathogen/damage-associated molecular 
patterns (PAMPs and DAMPs, collectively pattern recogni-
tion receptors, PRRs) in the apoplast (Tang et al. 2017), 
or nucleotide binding leucine-rich repeat proteins (NLRs) 
which detect pathogen effectors secreted into the plant cell 
(Jones et al. 2016). Within minutes of pathogen perception 

by a PRR or NLR, signal transduction cascades are triggered 
which involve Ca2+ burst, ROS burst, activation of MAPK 
cascades, and transcriptional reprogramming (Cui et al. 
2015; Bigeard et al. 2015; Kimura et al. 2017). Phytohor-
mone signaling is also induced, and the disease-associated 
hormones salicylic acid, jasmonic acid, and ethylene inter-
act with each other and with growth hormones to regulate 
the plant’s response (Kumar et al. 2015; Vlot et al. 2009; 
McManus 2012; Yang et al. 2015; Song et al. 2014; De 
Bruyne et al. 2014; Karasov et al. 2017). These signaling 
mechanisms ultimately lead to the dynamic and pathogen 
specific activation of defense mechanisms. These include 
induction of the pathogenesis-related (PR) genes, which 
encode proteins with a variety of antimicrobial properties 
including cell wall and cell membrane disruption and protein 
and nucleic acid degradation (van Loon and van Strien 1999; 
van Loon et al. 2006). Another component of the defense 
response is modification and reinforcement of the cell wall 
to prevent further invasion (Bellincampi et al. 2014). Pro-
grammed cell death can also be induced to prevent further 
colonization of exposed tissues (Dickman and Fluhr 2013; 
Coll et al. 2011).

Canonically, disease resistance in plants has been 
described as a qualitative phenomenon, whereby a PRR or 
NLR interacts with a pathogen effector directly or indirectly 
(Mackey et al. 2002; Hoorn and Kamoun 2008), triggering 
induction of defenses termed the hypersensitive response, 
marked by localized cell death, which prevents further colo-
nization of plant tissue (Mur et al. 2008). However, plants 
often exhibit quantitative resistance, sometimes termed dis-
ease tolerance, to pathogens, which features delayed disease 
progression compared to more susceptible varieties of the 
same species (Kushalappa et al. 2016; Corwin and Klieben-
stein 2017; Poland et al. 2009). Quantitative resistance, also 
known as polygenic resistance, is associated with many 
genes of small effect, and QTL analysis and subsequent 
molecular characterization have shown that expression level 
and polymorphism in PRRs, NLRs, transcription factors, 
and downstream responders such as PR proteins contribute 
to quantitative resistance (Corwin and Kliebenstein 2017).

To date, no gene-for-gene interaction has been demon-
strated between cacao and any of its pathogens, and therefore 
described resistance phenotypes in cacao refer to quantita-
tive resistance. Use of -omics strategies in the past decade 
have greatly advanced the characterization of the arsenal 
of genes potentially contributing to resistance in cacao. 
Two annotated cacao genomes have been published (Mot-
amayor et al. 2013; Argout et al. 2011), and another 200 
genotypes were recently sequenced and are being analyzed 
to identify loci associated with resistance to another two 
cacao diseases, witches’ broom and frosty pod rot, caused by 
related basidiomycete fungi (McElroy et al. 2018). The ver-
sion one publication of the Criollo cacao genome included 
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an analysis of cacao’s PRRs identifying 253 leucine-rich 
repeat receptor-like kinases (LRR-RLKs) and 297 NLRs 
(Argout et al. 2011). Recent transcriptomic analyses of 
cacao’s defense response have examined gene regulation 
during Witches’ Broom development using RNA-Seq (Teix-
eira et al. 2014), Phytophthora megakarya infection of leaf 
tissue using a macroarray (Legavre et al. 2015), infection 
of leaves by Phytophthora palmivora and Colletotrichum 
theobromicola using a microarray (Fister et al. 2016), and 
response of leaves to salicylic acid treatment (Fister et al. 
2015). Genomic analyses have also been applied to the two 
most damaging Phytophthora species, P. megakarya and 
P. palmivora. Both genomes were recently sequenced (Ali 
et al. 2017a, b) and a transcriptomic approach was used to 
differentiate the responses induced by inoculation of pods of 
a susceptible cacao genotype (Ali et al. 2017b). These stud-
ies have identified hundreds to thousands of gene involved 
in the cacao biotic stress response, but further work target-
ing resistant and susceptible genotypes is required to clarify 
key molecular players that mediate resistance or tolerance, 
such that clones with useful variation can more effectively 
be used in breeding programs.

The goal of this study was to identify genes significantly 
regulated in response to Phytophthora megakarya early 
disease progression in a resistant (SCA6) and a susceptible 
(NA32) cacao genotype and to better understand basal dif-
ferences in gene expression between these genotypes. Both 
SCA6 and NA32 are agronomically important genotypes. 
SCA6 is a well-known source of resistance to Phytophthora 
(Ali et al. 2016) and cacao’s fungal diseases (Teixeira et al. 
2015) and NA32 and its progeny are widely cultivated for 
good pod quality (Dinarti et al. 2015). Further we sought 
to characterize allelic variation in defense genes to survey 
polymorphism at immune-related loci to begin to dissect 
genetics of defense in cacao.

Materials and methods

Plant material

The SCA6 and NA32 genotypes were chosen from the col-
lection of parental lines among those used to initiate the 
breeding program at the Centre National de Recherche 
Agronomique (CNRA) in Adiopodoume, Côte d’Ivoire. 
Both clones were originally collected in Peru, but belong to 
different genetic groups [SCA6 belongs to the Contamana 
genetic group while NA32 belongs to the Nanay genetic 
group (Motamayor et al. 2008)]. The performance of these 
genotypes has been quantified at CNRA using in-field pod 
rot measurements with mature trees over 6 years and the 
detached pods and detached leaves in the lab since 2000 
(Tahi et al. 2000; Pokou et al. 2008). Of all the ancestral 

genotypes used in CNRA breeding programs, SCA6 is the 
most fully characterized resistant genotype, while NA32 
is among the most susceptible to P. megakarya and P. 
palmivora. On a scale of 1 to 5 used to score the leaf test, 
SCA6 always is rated as 1 (most resistant) to P. palmivora, 
while NA32 scores on average 4.5 (Pokou et al. 2001, 2008). 
Leaf and pod based resistance tests of SCA6 tissues inocu-
lated with P. megakarya also classify it as a resistant vari-
ety (Nyadanu et al. 2012). Despite its susceptibility, NA32 
is widely grown in West Africa because of its high yield 
(Pokou et al. 2009).

Experimental design

The experiment was carried out in a shade net house at 
CNRA. Four-month old grafted plants were arranged in two 
blocks: one sprayed with zoospore suspension and the other 
with water as a control. Each block was composed of 160 
plants arranged in a grid with ~ 20 cm of spacing between 
plants, with genotypes in alternating rows, and a border 
of plants on all sides that were not used for sampling. The 
blocks were subdivided by a 1 m wide walking lane (shade 
net house organization schematic in Supplemental Fig. S1).

Pathogen maintenance

The P. megakarya isolate SOU 130.B, a virulent strain com-
monly used in resistance tests in Côte d’Ivoire, was cho-
sen for inoculations. The pathogenicity of the isolate was 
maintained in the laboratory by regular inoculation of green 
mature cocoa pods and by re-isolation afterwards on pea 
agar medium in tubes placed at 26 °C in the dark. Zoospore 
suspensions were obtained after incubation of culture flasks 
for 6 days in darkness followed by 10 days with alternating 
12 h darkness and fluorescent light. To release zoospores, 
cultures were flooded with distilled water at 4 °C and incu-
bated with incandescent light for at least 40 min (Tahi et al. 
2000).

Application of treatments and sampling

RNA preservation solution (final concentration 3.5  M 
ammonium acetate, 16.6 mM sodium citrate, 26.6 mM 
EDTA, pH 5.2), used to prevent RNA degradation, was 
prepared the morning of plant inoculation. Sampling was 
performed using scissors to cut petioles to remove one stage 
C leaf (Fister et al. 2016a, b; Mejia et al. 2012) from each 
of two randomly selected plants that were then placed into 
a 50 mL tube of RNA preservation solution and were later 
pooled for RNA extractions. At each time point, samples 
from different plants (biological replicates) for each geno-
type were collected from each block. Time zero samples 
were collected immediately prior to application of treatment. 
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After this collection, treatments were applied by spraying the 
blocks with Phytophthora megakarya zoospores (300,000 
per mL) or distilled water alone. Each plant was sprayed four 
times, twice from above and twice from below. Leaf samples 
were collected at 6, 24, and 72 hai (hours after inoculation). 
To avoid wound effect on gene expression a different set 
of plants was used for each time point. After leaves were 
collected, each experimental plant was removed from the 
experiment area and was replaced by a healthy, extra plant of 
the same genotype to prevent transmission of wound signal-
ing among plants and microenvironmental effects from miss-
ing plants. Samples were shipped on dry ice in coolers to 
Pennsylvania State University for subsequent processing.

RNA isolation, RNA‑Seq library preparation, 
and transcriptome sequencing

For each sample, one 3 × 3 cm2 was cut from each of the two 
pooled leaves and they were washed in sterile water to rinse 
residual salts from the RNA preservation solution. Together 
the two squares were ground with a mortar and pestle using 
liquid nitrogen. RNA was then extracted from the ground 
tissue according to the PureLink Plant RNA Reagent proto-
col (Thermo Fisher Scientific, Waltham, MA), with minor 
modifications. The modifications included using 1 mL of 
RNA reagent to better resuspend the ground tissue, and 
all centrifugations were performed at 14,000 rpm to more 
effectively pellet ground tissue and separate phases after 
chloroform extractions. Samples were precipitated adding 
1/10th volume of 3M sodium acetate and 2.5 volumes of 
100% ethanol.

After extraction, RNA samples were treated with RNase-
free DNase (ThermoFisher Scientific) according to manu-
facturer’s instructions, purified with an additional ethanol 
precipitation as above and resuspended in RNase-free water. 
Initial measurement of concentration and quality were per-
formed using Qubit and Nanodrop spectrophotometers, 
respectively.

RNA quality assessment, library preparation, and 
sequencing were performed at the Pennsylvania State Uni-
versity Genomics Core Facility (University Park, PA). RNA 
quality was assessed using an Agilent RNA 6000 kit (Agi-
lent Technologies, Santa Clara, CA). Samples with a RIN 
score of 7.3–8.1 were used in this study. The four replicates 
with highest RIN for each genotype*time point*treatment 
combination were selected for library preparation. 200 ng 
of each sample was used to prepare a barcoded library using 
the TruSeq Stranded mRNA Library Prep Kit according to 
the manufacturer’s protocol (Illumina, San Diego, CA). 
The concentration of each library was determined by qPCR 
using a Kapa Library Quantification Kit Illumina Platforms 
according to the manufacturer’s instructions (Kapa Biosys-
tems, Wilmington, MA).

An equimolar pool of all barcoded libraries was made 
and sequenced on the Illumina HiSeq 2500 in Rapid Mode 
using 100 nt single-read sequencing. A total of five Rapid 
Runs were performed producing a total of ~ 1,273,600,000 
reads and an average of ~ 19,900,000 reads per sample.

Read processing and gene expression analysis

After sequencing, the 64 samples were processed, first by 
removing adaptors and trimming low quality sequence 
using trimmomatic (Bolger et al. 2014). Reads were next 
mapped to the cacao reference genome sequence (Criollo 
genome v2.0) using hisat2 (Kim et al. 2015). BEDtools 
(Quinlan and Hall 2010) was used to produce coverage 
graphs and data were visualized using IGV (Thorvaldsdót-
tir et al. 2013) to check for errors. Finally, read counts for 
each gene were calculated including multimapped reads 
using featureCounts (Liao et  al. 2014). By comparing 
sequences of reads, one sample, an NA32 6 hai water-
treated replicate, was found to have been a mislabeled 
RNA sample from SCA6 tissue and was excluded from 
analysis, so the NA32 6 hai water treatment analyses are 
based on three biological replicates. Comparisons of dif-
ferential gene expression were performed using DESeq2 
with default settings (Love et al. 2014). Correlation analy-
sis of PR and defense-associated receptor gene expression 
in time 0 samples was performed in JMP 13.0 on DESeq2 
normalized counts using the multivariate analysis method 
with default estimation method. RNA-seq data is available 
at GEO (GSE116041).

GO annotation and enrichment analysis

GO annotation for Criollo genome v2.0 was performed 
using BLAST2GO (Conesa et al. 2005; Götz et al. 2008). 
Cacao polypeptide sequences were compared to the 
TAIR10 (Berardini et al. 2015) Arabidopsis protein data-
base using BLASTX with an E value cutoff of 1.0E−3. 
Mapping and annotation were performed using default 
settings (E-value hit filter of 1.0E−6).

GO enrichment analyses were performed using AgriGO 
(Du et al. 2010). GSEA (Subramanian et al. 2005) was 
applied to compare statistically significantly regulated 
genes (FDR < 0.05) from each comparison to the back-
ground set of GO annotation for all cacao genes. These 
comparisons included all significant genes (FDR < 0.05) 
from a basal genotype comparison (based on eight samples 
from each genotype at time zero) and water vs. pathogen 
treatments for each genotype at 6, 24, and 72 h after inocu-
lation for both genotypes.
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Defense gene classification, protein functional 
domain prediction, and variant analysis

To identify PR genes, we first followed the method presented 
in (Fister et al. 2016) and found 313 PR genes in version 2 of 
the Criollo genome (Table S1). Defense associated receptors 
(Table S2), including NLRs and leucine-rich repeat receptor-
like kinases (LRR-RLKs), were identified according to the 
hidden Markov matrix-based procedure previously outlined 
(Marden et al. 2017). Other defense associated receptors of 
interest, including lectin- and malectin-domain containing 
genes and Feronia genes (Li et al. 2016a, b), which lack 
LRR domains and were therefore not detected by the HMM, 
were manually identified using their annotation. All defense 
associated receptors of interest were submitted to NCBI 
Batch CDSearch (Marchler-Bauer et al. 2015) to identify 
conserved functional domains. To identify synonymous and 
non-synonymous single nucleotide polymorphisms (SNP), 
we first mapped reads to the predicted coding sequences 
(CDS) from version 2 of the Criollo genome using CLC 
Genomics Workbench version 6.5.1. We then identified 
variable positions using VarScan2 (Koboldt et al. 2012). 
Synonymous and non-synonymous sites were determined 
using SNAP (Korber 2000). CLC and VarScan2 were run 
according to the procedure outlined in Marden et al. (2017) 
and SNAP was run using default settings. We performed 
GO enrichment analyses using AgriGO (Du et al. 2010) 
with a significance threshold of FDR < 0.05. We further 
investigated polymorphism in several genes of interest by 
aligning the amino acids sequences of de novo assembled 
contigs (Haas et al. 2013) using Geneious v10.1.3 (Kearse 
et al. 2012).

Statistical model for analysis of PR gene expression

To test the hypothesis that PR genes in general are dif-
ferentially expressed in the two genotypes, we used a 
standard least squares model (JMP 13.0, SAS) with ‘Geno-
type,’ ‘Treatment,’ ‘Time Point,’ ‘Genotype*Treatment,’ 
‘Genotype*Time Point,’ ‘Treatment*Time Point,’ and 
‘Genotype*Treatment*Time Point’ as effects, and with 
basal expression, calculated from the eight 0 hai samples 
for each genotype, as a covariate. This analysis used the 
313 PR genes in V2 of the Criollo genome, of which 218 
PR genes remained after filtering low expressed genes 
which contribute primarily to noise (genes with average 
read count < 10 averaged across all samples). To iden-
tify pairwise differences among model LS means, a least 
squares means student’s T test was applied. Next, to test 
whether signal from the most differentially expressed genes 
(FDR < 0.05 for either genotype at any time point in the 
DESeq2 analysis, above) primarily drove the results of the 

model, we repeated the analysis but excluded that subset 
of PR genes.

Results

Disease progression

To study the responses of a resistant and a susceptible 
cacao genotypes to inoculation with Phytophthora mega-
karya zoospores, young plants were spray inoculated with 
zoospores or with distilled water as a control. Our strategy 
was to capture gene expression profiles in the very early 
stages of infection, to identify disease resistance genes 
involved in resistance but avoiding the latter stages of 
infection. Thus, samples were collected for transcriptomic 
analysis immediately before application of treatment, as 
well as 6, 24, and 72 hai. However, symptoms of disease 
progression did not appear until after the sample collec-
tion window. By 120 hai, small, isolated lesions appeared 
on SCA6 leaves, with portions of the midveins and sec-
ondary venation showing areas of necrosis (Fig. 1). At 
120 hai NA32 leaves were more severely damaged by the 

Fig. 1   Disease progression after inoculation of plants with zoospores. 
Representative photographs of Stage C leaves of each genotype at 
time 0 (immediately before inoculation), and at 24 and 120 hai. Scale 
bars represent 1 cm
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Genotype and Time Point Up-regulated Genes Down-regulated Genes
SCA6 - 6 hai 0 0
NA32 - 6 hai 0 3
SCA6 - 24 hai 395 526
NA32 - 24 hai 4 20
SCA6 - 72 hai 29 21
NA32 - 72 hai 6 3
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pathogen, showing extensive warping and development of 
large (> 1 cm2) necrotic areas.

Gene induction by Phytophthora megakarya 
treatment

For the RNA-Seq analyses, on average ~ 19,900,000 reads 
were generated per sample, and 88.4% mapped unambigu-
ously to the Criollo V2 reference genome sequence (Argout 
et al. 2017). After removing low expressed genes which 
contribute to noise, 19,442 genes remained in the analy-
sis. We used normalized counts for these genes to create a 
correlation matrix and found that global gene expression 
was largely consistent regardless of genotype, treatment, 
and time points (mean R = 0.83). Averaging expression 
values across biological replicates (Supplemental Figs. S2, 
S3), we found that 6 hai samples had a weaker correlation 
with all other time points, indicating some diurnal effect 
resulting from the 6 h shift in sampling time. Within each 
genotype*time point comparison, pathogen and control sam-
ples correlated very highly (R = 0.985) suggesting the patho-
gen treatment had a weak effect on global transcription.

To identify the number of genes that were responsive to 
pathogen treatment, we used DESeq2 (Love et al. 2014) to 
calculate fold change, comparing the pathogen and water 
treatments at each time point for each of the genotypes. 
Overall, 50 or fewer genes were detected as statistically sig-
nificantly regulated (FDR < 0.05), with the exception of the 
24 hai time point for SCA6, where 921 genes were below 
the FDR cutoff (< 0.05) (Fig. 2a) and therefore classified as 
differentially expressed genes (DEGs). To determine which 
categories of genes were regulated at 24 hai in SCA6, we 
used the AgriGO platform (Du et al. 2010; Tian et al. 2017) 
to perform a Gene Set Enrichment Analysis (Subramanian 
et al. 2005) based on these 921 DEGs. 71 GO terms were 

detected as enriched (FDR < 0.05, Table S3). A subset of 
these are displayed in Fig. 2b, and reflect enrichment of 
terms typically associated with plant defense responses and 
terms previously shown to be involved in SCA6’s response 
to salicylic acid as a defense elicitor (Fister et al. 2015). 
Many of the 71 are nested terms associated with processes 
including stress response and redox reactions, and cell com-
partments, particularly components of the chloroplast. The 
genes induced and repressed in both genotypes at other time 
points include a mix of defense associated genes, genes with 
functions in redox and signaling, and other unrelated molec-
ular pathways (Table S4).

Next, we focused our analysis on DEGs in the SCA6 24 
hai comparison that putatively belong to gene classes associ-
ated with defense. We focused on two broad gene classes: 
defense associated receptors [including (PRRs) and NLRs] 
and pathogenesis-related (PR) genes. The analysis revealed 
that 17 defense-associated receptors were differentially 
regulated (10 induced, 7 repressed) and 18 PR genes were 
differentially regulated (15 induced, 3 repressed) (Fig. 2c, 
Table S5).

While we did not detect dramatic induction of many PR 
genes at any time point, we hypothesized that pathogen treat-
ment could result in a subtle induction of many PR genes. 
To test this hypothesis, we constructed a standard least 
squares model to analyze the expression of PR genes. First 
we used the model to analyze expression of all 218 PR genes 
above the background noise level (see methods). This model 
detected a highly significant genotype*time point*treatment 
effect (p < 0.0001, Table S6-1), and a posteriori T test 
revealed that average PR gene expression was significantly 
higher in 24 and 72 hai SCA6 Phytophthora treated samples 
than in other sample groups (p < 0.05) (Fig. 2d). We con-
sidered that the differentially expressed PR genes could be 
driving this result. To test more specifically for a subtle dif-
ference in PR genes in general, we repeated the analysis, but 
excluded any PR gene detected as differentially expressed 
(FDR < 0.05) at any time point for either genotype. Results 
of these two models do not differ in any meaningful way 
(Fig. 2e, Table S6-2). Therefore, expression of PR genes in 
general appear to show a trend toward slight induction in 
SCA6, which was not observed in NA32. PR gene expres-
sion appeared to be upregulated at 6 hai in NA32, but their 
expression level was lower than SCA6’s PR gene expression 
at any time point.

Comparison of genotypes in basal state

In addition to induction of defense pathways after infection, 
basal expression of defense genes plays an important pro-
phylactic role in preventing colonization by microbes. To 
identify differences in basal gene expression, we analyzed 
differences in basal expression between the two genotypes 

Fig. 2   Summary of gene induction detected by RNA-seq analy-
sis. a Table displaying number of differentially expressed genes 
(FDR < 0.05) at each time point from inoculation vs. control treat-
ment. b Subset of enriched GO terms (with FDR < 0.05) based on 
input set of 921 DEGs from the 24 hai SCA6 treatment. Y-axis indi-
cates number of DEGs with corresponding GO assignment. Numbers 
above bars indicate percentage of DEGs in each GO terms calculated 
from number of genes in background set for the Criollo genome v2.0. 
Full list of enriched GO terms presented in Table S3. c Volcano plot 
summarizing gene regulation in the SCA6 24 hai pathogen vs. control 
comparison. Putative PRR/NLR genes are shown in green, putative 
PR genes are shown in red. Select PRRs/NLRs and PRs are labelled 
with abbreviated versions of their annotations or PR gene family, 
respectively. d Bar graph summarizing statistical model of PR gene 
expression. Bars represent log10 least squares means calculated from 
across all PR genes and biological replicates. Error bars represent 
standard errors. Bars labelled with different letters are significantly 
different by T test (p < 0.05). e Bar graph summarizing statistical 
model of PR gene expression as in d, but excluding genes detected as 
differentially expressed (DE) at any time point in either genotype

◂
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by comparing the transcriptomes at the 0 hai time point. We 
identified 3118 DEGs (FDR < 0.05), with several showing 
greater than 50-fold higher expression in one or the other 
genotype (Fig. 3a). The 15 genes with most dramatically 
higher expression in SCA6 included a guard-cell associated 
F-Box protein, an anthocyanidin 3-O-glucosyltransferase, 
two expansins, and two NB-LRRs, while the 15 genes with 

higher expression in NA32 include two cytochrome P450s 
and five defense-associated receptors (Table S7).

To categorize the genes with genotype-specific differ-
ences in expression, we performed Gene Set Enrichment 
Analysis of the 3118 DEGs using the AgriGO platform (Du 
et al. 2010; Tian et al. 2017). Eight GO terms were detected 
as enriched (FDR < 0.05). These terms included oxidoreduc-
tase activity, six terms associated with the chloroplast or its 
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components, and one term associated with the cytoplasm 
(Table S8). We plotted the distribution of fold differences 
of genes within several of these GO terms and found that 
distributions were roughly normal (Fig. 3b–e). Therefore, 
we did not detect evidence of skewed transcriptional activity, 
which would indicate generally higher basal expression of 
these groups of functionally related genes.

We next analyzed basal expression differences in defense-
associated receptors and PR genes. Expression levels of 

the two gene classes were highly correlated between the 
two genotypes: defense-associated receptors had an R2 of 
0.75, and PR genes had an R2 of 0.85, and genes in these 
families had a wide range in expression level in leaf tissues 
(Supplemental Fig. 4A, B). Despite the general similarity 
between the genotypes, we identified 20 defense-associated 
receptors and three PR genes with higher expression in 
SCA6. In NA32 we identified 27 defense-associated recep-
tors and three PR genes with higher expression (log2 fold 

Fig. 4   Defense response-
associated differences in basal 
transcriptomic profiles between 
Sca6 and NA32. a Volcano 
plot displaying DEGs in basal 
comparison. Putative PRR/NLR 
genes are labeled in green, PR 
genes are labeled in red. Posi-
tive values on the x-axis indi-
cate log2 fold higher expression 
in SCA6, negative values indi-
cate higher expression in NA32. 
Select PRRs/NLRs and PRs 
are labelled with abbreviated 
versions of their annotations or 
PR gene family, respectively. b 
Table summarizing comparison 
of RNA-seq counts between the 
genotypes for select defense-
associated receptors. Standard 
deviations are calculated from 
eight biological replicates

Gene ID Annotation Genotype

Tc07v2_g011300 Putative probable disease
resistance protein At4G27220

SCA6
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NB-ARC domain-containing
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Tc04v2_g008560 Receptor-like protein kinase
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Putative receptor-like protein

kinase Feronia
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Putative leaf rust 10 disease-
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protein kinase-like 2.2
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protein RGA4
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difference > 1.5) (Fig. 4a, Table S9). Several of the defense-
associated receptors showed dramatically different expres-
sion in the genotypes (Fig. 4b). The defense-associated 
receptors identified as DEGs tended to have ~ 100–1000 
normalized counts in samples from the more highly express-
ing genotype, while the lower expressing genotype had very 
few counts (tens or fewer).

Global polymorphism analysis

Expression differences between SCA6 and NA32 could help 
explain their divergent resistance phenotypes. Other dimen-
sions that could help explain resistance and/or susceptibility 
are the quantity and character of coding variants present in 
each genotype. To quantify this variation, we mapped reads 
to the predicted CDS from version 2 of the Criollo genome 
and identified SNPs using VarScan2. SCA6 had 10,167 
total SNPs, 3388 synonymous and 6779 non-synonymous 
(Fig. 5a). NA32 had 11,458 total SNPs, 4771 synonymous 
and 6687 non-synonymous. SCA6 and Criollo B97 belong 
to closely related genetic groups (Contamana and Criollo) 
(Motamayor et al. 2008), thus the larger number of SNPs 
observed in NA32 (Iquitos) relative to SCA6 is likely due 
to greater divergence between Criollo and NA32. However, 
estimates for both genotypes are consistent with published 
intra-species comparisons in other crops (Vidal et al. 2012; 
Yang et al. 2011). Of these SNPs, < 5% (470/10,167) were 
within defense-associated receptors in SCA6, and < 7% 
(801/11,458) in NA32. The identity of genes possessing pol-
ymorphic sites was not completely congruent between geno-
types, though some overlap existed (Fig. 5b). Gene ontology 
enrichment of functional categories over-represented in our 
SNP data revealed 125 categories in SCA6 and 167 cat-
egories in NA32 (Supplemental Table S10), of which 113 
categories were over-represented in both genotypes.

Analysis of polymorphism in putative defense genes

Lack of defense gene induction in NA32 upon Phytophthora 
challenge could reflect an inability to recognize the patho-
gen and allelic variation in defense genes could determine 
this capability. In order to identify the defense-associated 
receptors potentially controlling the capacity for recogni-
tion, we investigated polymorphism in receptors that were 
differentially expressed between the genotypes in the basal 
comparison or were induced by pathogen treatment, were 
highly polymorphic (≥ 4 non-synonymous mutations), and/
or were assigned to one of the disease-resistance consen-
sus QTLs described by Lanaud et al. (2009). We identi-
fied four defense associated receptors that fit the majority 
of these criteria: two canonical NLRs (Tc04v2_g010330 
and Tc06v2_g002240), an l-type lectin-domain containing 
receptor-like kinase IX (Tc02v2_g010410), and a Malectin/

receptor-like protein kinase (Tc04v2_g008380). One of the 
genes, Tc02v2_g010410, also has blast homology with an 
Arabidopsis gene with the GO term associated with oomy-
cete resistance. Each receptor contained between four and 
eight polymorphic residues in domains known to participate 
in ligand binding and subsequent pathogen recognition (Seg-
retin et al. 2014; Wang et al. 2015) (Fig. 5c). Many of the 
substitutions observed between the two genotypes are non-
conservative amino acid changes and are thus more likely to 
alter the function of the protein.

Discussion

Diseases of cacao significantly reduce the annual cocoa 
crop, threatening farmer livelihood and the stability of choc-
olate production. While natural variation in cacao’s disease 
resistance exists, developing varieties with superior disease 
resistance with desirable pod and bean characteristics is a 
slow process. Several QTL mapping studies have identi-
fied regions of the cacao genome associated with black pod 
resistance (Crouzillat et al. 1996, 2000a, b; Lanaud et al. 
1999, 2004; Motilal and Sounigo 2000; Clement et al. 2003; 
Flament et al. 2001; Risterucci et al. 2000, 2003; Queiroz 
et al. 2003, 2006; Brown et al. 2005, 2007; Faleiro et al. 
2006). However, due to small population sizes, the QTLs 
include hundreds to thousands of genes, many of them with 
unknown function. Identifying the molecular mechanisms 
of disease resistance in cacao and narrowing the analysis 
to specific genes is vital for speeding-up breeding efforts 
for improving tolerance to a suite of pathogens harmful to 
cacao. In this study we analyzed the transcriptomes of two 
important cacao genotypes at basal levels and in response 
to inoculation with Phytophthora megakarya, a major cacao 
pathogen (Bailey et al. 2016) and were able to identify key 
candidate genes with potential roles in cacao’s defense 
system.

For this experiment, we selected two well-studied cacao 
genotypes, the broadly resistant SCA6 and the highly Phy-
tophthora susceptible NA32. Defense responses of cacao 
varieties are characterized through use of attached and 
detached pod (Iwaro et al. 2005) and leaf assays (Nyassé 
et  al. 1995; Efombagn et  al. 2011), as well as through 
assessment of clones in the field (Pokou et al. 2008), and 
these metrics are generally well-correlated (Nyadanu 
et al. 2012; Efombagn et al. 2011). In previous leaf-disc 
inoculation assays, they consistently scored among the 
most resistant and most susceptible to Phytophthora spp. 
in leaf- and pod-based screens (Pokou et al. 2001, 2008; 
Nyadanu et al. 2012). In our case, we sampled leaf tissues 
in order to increase biological replication, while recogniz-
ing that specific genes involved in foliar and pod reaction 
to Phytophthora may differ, thus additional evidence would 
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be required to confirm molecular mechanisms in pods. In 
our experiment, neither genotype developed symptoms of 
infection during the collection period. However, 5 days after 
inoculation, NA32 leaves exhibited advanced necrosis. In 
our experiment SCA6 leaves developed smaller lesions, but 
not the necrotic flecking typical of hypersensitive response, 
suggesting quantitative, rather than qualitative, resistance is 
at play. Interestingly, SCA6 was previously shown to develop 
a hypersensitive-like response to zoospore inoculation with 
P. palmivora but not P. megakarya, although the phenotype 
may be attributed to P. megakarya forming more appres-
soria, allowing it to more efficiently penetrate unwounded 
tissue (Ali et al. 2016).

In the canonical plant defense response, recognition of 
PAMPs or effectors triggers major transcriptional repro-
gramming which leads to resistance, typically featuring 
induction of PR genes and other antimicrobial compounds 
(Bigeard et al. 2015; Wu et al. 2014). These processes have 
been described in model monocots (Balmer et al. 2013) and 
dicots (Denoux et al. 2008; Vogel and Somerville 2000). 
Similar trends have also previously been described in other 
perennials: disease-resistant rubber tree featured PR gene 
induction after infection (Li et al. 2016) and a disease-
resistant chestnut variety showed earlier and more dramatic 
induction of a variety of defense associated transcripts than 
did a susceptible variety (Santos et al. 2017). A disease-
resistant apple cultivar was also shown to have constitu-
tively higher basal expression of antimicrobial transcripts 
than did a susceptible cultivar (Degenhardt et al. 2005). A 
similar finding was also described in grapevine, where a 
powdery resistant variety showed higher basal expression 
of a set of PR genes but minimal transcriptional regula-
tion after inoculation, while a susceptible variety featured 
major transcriptional changes, including induction of typi-
cal defense-response components like PR genes (Fung et al. 
2008). Taken together, these results suggest higher basal 
defense gene expression, more dramatic induction of genes 
upon pathogen challenge, or both together can explain differ-
ences between resistant and susceptible cultivars in interac-
tions of plants with their pathogens.

Expression level of PRRs and NLRs, the upstream genes 
in the defense response, has also been shown to correlate 
with disease resistance. Overexpression of a PRR (Mysore 
et al. 2003) and an NLR (Oldroyd and Staskawicz 1998) in 
tomato were shown to enhance resistance compared to that 
mediated by their endogenous expression levels. Expression 
of a rice PRR under different promoters has also correlated 
expression level to degree of resistance and induction of 
downstream defense genes (Cao et al. 2007). Therefore,we 
were also interested in analyzing both basal expression level 
and induction of defense-associated receptors.

The two genotypes exhibited significant defense-related 
gene expression differences prior to pathogen exposure (the 

basal state; 0 hai time point). We identified 47 putative pat-
tern recognition receptors or resistance genes which were 
expressed in a genotype-specific manner. These receptor 
proteins are maintained in large families in plants in order 
to bind and trigger a response to diverse pathogen mole-
cules, signatures of cellular damage, and modification of 
other endogenous plant proteins [reviewed in (Cui et al. 
2015; Boutrot and Zipfel 2017)]. Our RNA-seq data sug-
gest that these genotypes may not express the same receptors 
in leaf tissue, which could be one explanation for NA32’s 
inability to detect and respond to infection. We will test this 
hypothesis using a transient expression system (Fister et al. 
2016a, b) to introduce these receptors more highly expressed 
in SCA6 into susceptible cacao backgrounds to attempt to 
complement the susceptibility phenotype.

In our measurement of response to pathogen treatment, 
GO analysis yielded results that supported previous find-
ings about transcriptomic response of SCA6 to salicylic acid 
(Fister et al. 2015). In this previous study, SCA6 was demon-
strated to have a strong oxidative burst believed to be linked 
to generation of superoxide and peroxide in the chloroplast 
which have been linked in enhanced disease resistance in 
other plants (Van Aken and Van Breusegem 2015). SCA6’s 
salicylic acid concentration was also previously quantified 
and compared to a different disease-susceptible cacao vari-
ety, and salicylic acid levels did not appear to differ between 
the genotypes, suggesting that SCA6’s resistance is medi-
ated by factors downstream of or independent from salicylic 
acid synthesis (Chaves and Gianfagna 2006). At the indi-
vidual gene level, we were able to detect > twofold induc-
tion of genes associated with oxidative burst, as well as 10 
PR genes and four defense-associated receptors in SCA6 
at 24 hai (Table S5). The PR genes included PR-2 s (β-1,3-
Glucanases) and PR-3 s (chitinases), which encode proteins 
with well-defined roles in degrading pathogen cell walls (van 
Loon and van Strien 1999; van Loon et al. 2006), including 
in cacao (Maximova et al. 2006). Furthermore, we detected 
slight upregulation of average PR gene expression in SCA6 
at 24 and 72 hai. Across the whole experiment, average 
expression of PR genes in the resistant SCA6 genotype at 
these time points showed a highly significant increase in 
expression compared to susceptible NA32 (P = 10−17; Sup-
plemental Table S6). It is possible that this small (roughly 
10%) induction of the PR class as a whole could impact 
the pathogen’s ability to colonize the plant. Another pos-
sible cause of SCA6’s resistance could be elevated basal 
expression of PR genes. We did not observe a general higher 
basal expression of PRs in SCA6, but specific genes were 
identified with higher expression in SCA6 (Fig. 4, Supple-
mental Table S9). One of these is a PR-16, an oxalate oxi-
dase encoding gene, a member of a family of genes shown 
to contribute to ROS burst and Phytophthora defense (He 
et al. 2013; Tripathy and Oelmüller 2012). The other PR 



Plant Molecular Biology	

1 3

gene with higher basal expression in SCA6 was a PR-1 fam-
ily member. The molecular activity of PR-1s was recently 
elucidated in a study showing that the proteins bind sterols 
and cause pathogen membrane leakage (Gamir et al. 2017). 
Constitutive overexpression of a PR-1 was previously shown 
to enhance defense against oomycetes, but not other patho-
gens, in tobacco (Alexander et al. 1993).

In contrast to SCA6, the susceptible NA32 genotype did 
not exhibit a strong transcriptional response to pathogen 
treatment at any time point we surveyed. As explained above, 
genotypic differences in expression levels are one potential 
explanation for this result. Other dimensions include the 
quantity and character of coding variants that renders NA32 
unable to detect and respond to this strain of pathogen. To 
that end, we mapped reads to the predicted coding sequences 
of the Criollo V2 genome in order to identify SNPs in each 
genotype (Fig. 5a). SCA6 possessed 2,683 genes with at 
least one polymorphic site, while NA32 possessed 3,658. 
The identity of these genes was not completely congruent 
between SCA6 and NA32 (Fig. 5b) and GO enrichment 
revealed functional categories unique to each genotype (Sup-
plemental Table S10). These categories include many of the 
same GO terms that were enriched in the expression data for 
SCA6, including response to abiotic stress, photosynthesis, 
response to osmotic stress, and response to chemical stimu-
lus. Overlap between gene expression and SNP profiles indi-
cates these categories may play an important role in shaping 
defense response.

Lastly, we identified four defense-associated recep-
tors that may be potential mediators of P. megakarya rec-
ognition in SCA6 (Fig. 5c). As is common in NLR genes 
(Poland et al. 2009; Segretin et al. 2014; Allen et al. 2004; 
Karasov et al. 2014), polymorphic residues in the ligand 
binding domains of each receptor could contribute to dif-
ferential recognition of pathogens between the two geno-
types. NBS-LRR genes have specifically been shown to have 
altered effector recognition specificity upon single amino 
acid substitutions in the LRR domain (Segretin et al. 2014). 
While NLR mediated resistance is usually thought of as 
qualitative, examples of NBS-LRR mediated quantitative 
resistance, or field resistance, have been described (Rietman 
et al. 2012). Thus, the PRRs and NLRs we identified may 
provide quantitative resistance against certain isolates of P. 
megakarya. Homologs of both the l-type lectin-domain con-
taining receptor-like kinase and the malectin/receptor-like 
protein kinase in other plant species have been implicated 
in resistance to various Phytophthora species. In one study, 
two l-type lectin receptor kinases (LecRK) were demon-
strated to provide resistance to both Phytophthora brassi-
cae and Phytophthora capsici when overexpressed in both 
Arabidopsis thaliana and Nicotiana benthamiana (Wang 
et al. 2015). Moreover, both LecRKs were also shown to 
provide resistance when stably expressed in transgenic N. 

benthamiana, suggesting they provide resistance to Phy-
tophthora species in long-diverged plant lineages (Wang 
et al. 2016). The malectin/receptor-like protein kinase iden-
tified in our study shares homology with ANX1 and ANX2. 
These two genes have recently been shown to be negative 
regulators of PRR-mediated immunity via interference 
with FLS2–BAK1 complex formation (130). It is possible 
that differential expression and polymorphism in the cacao 
malectin/receptor-like protein kinase we identified could 
alter this negative regulation, thereby promoting resistance 
or susceptibility in SCA6 or NA32, respectively. While it is 
plausible that SCA6 defense is partially or even completely 
controlled by the defense associated receptors we have iden-
tified, more functional analyses are required to understand 
the basis of resistance between these two cacao genotypes. 
The CRISPR/Cas9 gene editing technique has been applied 
to cacao (Fister et al. 2018), and it offers a potential strat-
egy for studying association of particular receptors with 
pathogen recognition, allowing for targeted mutagenesis of 
domains or even residues of interest.

Improved understanding of the genetics underlying the 
interaction of cacao with its pathogens, including Phytoph-
thora spp., is essential to reduce losses to farmer income and 
stabilize the world’s cocoa supply. Genomic and transcrip-
tomic analyses of useful clones is essential to understanding 
cacao’s defense response and breeding of superior clones. 
In this study, we identified candidate defense genes which 
will be the subject of functional analyses to verify their role 
in protecting the plant from infection. Previous analyses of 
defense in cacao have not characterized polymorphism in 
putative defense genes and doing so is critical for guiding 
breeding efforts.
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