GENETICS AND GENOMICS

Joseph A. Verica · Siela N. Maximova · Mary D. Strem · John E. Carlson · Bryan A. Bailey · Mark J. Guiltinan

Isolation of ESTs from cacao (*Theobroma cacao* L.) leaves treated with inducers of the defense response

Received: 26 March 2004 / Revised: 8 July 2004 / Accepted: 10 July 2004 / Published online: 31 August 2004 © Springer-Verlag 2004

Abstract Pathogenic diseases represent a major constraint to the growth and yield of cacao (Theobroma cacao L.). Ongoing research on model plant systems has revealed that defense responses are activated via signaling pathways mediated by endogenous signaling molecules such as salicylic acid, jasmonic acid and ethylene. Activation of plant defenses is associated with changes in the expression of large numbers of genes. To gain a better understanding of defense responses in cacao, we have employed suppressive subtractive hybridization (SSH) cDNA libraries, macroarray hybridization analysis, high throughput DNA sequencing and bioinformatics to identify cacao genes induced by these signaling molecules. Additionally, we investigated gene activation by a phytotoxic elicitor-like protein, Nep1. We have identified a unigene set of 1,256 members, including 330 members representing genes induced during the defense response.

Keywords *Theobroma cacao* · Defense · Salicylic acid · Methyl jasmonate · Ethylene · Nep1

Communicated by W.A. Parrott

Sequences presented here are deposited with GenBank under accession numbers CF972636–CF974749

J. A. Verica · S. N. Maximova · M. J. Guiltinan () Department of Horticulture, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA e-mail: mjg9@psu.edu Tel.: +1-814-8637957 Fax: +1-814-8636139

M. D. Strem · B. A. Bailey Alternate Crops and Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA

J. E. Carlson Department of Forest Resources, Pennsylvania State University, University Park, PA, 16802, USA **Electronic Supplementary Material** Electronic supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00299-004-0852-5

Introduction

Cacao (*Theobroma cacao* L.) is endemic to the Amazon basin and Central America (Wood and Lass 1985); however, it is presently grown in over 5 million hectares of tropical lowlands around the world. Pathogenic diseases are a major problem for cocoa production, causing annual crop losses of 30–40%. In its endemic region, cacao is susceptible to a number of coevolved pathogens, such as *Crinipellis perniciosa*, the causal agent of witches broom disease, and *Moniliophthora roreri*, the causal agent of frosty pod rot (Wood and Lass 1985). Outside its center of origin, cacao is susceptible to a variety of opportunistic pathogens from indigenous hosts.

Gaining a better understanding of how cacao plants respond to pathogens is central to the task of reducing the devastating affects that pathogenic diseases cause to cocoa production. Toward this end, a variety of genetic and genomic resources have recently been developed in cacao to assist in this process, including a high-density linkage map, and the identification of disease-associated quantitative trait loci (QTL) (Bennett 2003). Recently, a gene discovery and array analysis program was initiated in cacao (Jones et al. 2002). In that study, 4,455 expressed sequence tags (ESTs) from untreated leaves and seeds were sequenced and assembled into a unigene set consisting of 1,380 members. Analysis of this gene set identified 46 sequences similar to either defense genes or other genes with known defense-associated functions.

In the present study, we undertook a gene discovery program to identify genes expressed in cacao leaves treated with inducers of the defense response. We identified a unigene set of 1,256 members representing genes expressed in defense-elicited leaves, including 330 representing genes induced by these signaling molecules.

Materials and methods

Plant growth and elicitor treatment

Cacao pods (Forastero, Comum variety) were provided by A. Pomella from the Almirante Center for Cacao Studies (Bahia, Brazil). Seeds were germinated in potting soil and grown under greenhouse conditions (daylength, 11-13 h) at 24°C. Benzothiadiazole (BTH; Syngenta, http://www.syngenta.com) was dissolved in water (1,000 mg l⁻¹) and applied as a foliar spray. Control plants were sprayed with water. Nep1 (5 μ g ml⁻¹) was combined with 0.2% (v/v) Silwet-L77 (Witco; http://www.cromptoncorp.com/) for foliar spray applications. Seedlings treated with Silwet-L77 (0.2%, v/v) were included as a control. Methyl jasmonate (0.12 mM) was mixed with distilled water and applied as a foliar spray. Controls were treated with water. Foliar sprays were applied to 4-month-old seedlings (3-4 true leaves) with a Binks model 15 sprayer (ITW Industries; http://www.binks.com) at approximately 1 kgf cm⁻² (=9.81 N) and at a rate of 46 ml m⁻². After treatment with methyl jasmonate or distilled water (methyl jasmonate control), seedlings were placed in glass cylinders, and the cylinders were sealed with plastic wrap. Ethylene was injected into the cylinders containing methyl jasmonate-treated seedlings at a concentration of 12 μ l l⁻ For each treatment, mature green leaves were collected at the time points indicated (BTH, 30 min and 2 h; Nep1, 30 min; methyl jasmonate/ethylene, 2 h), frozen in liquid nitrogen, and stored at -80°C.

cDNA library construction

The RNA isolation method was developed by adaptation of several established methods (Chang et al. 1993; McKenzie et al. 1997), and protocols provided with the Qiagen RNeasy Mini kit (Qiagen; http://www1.qiagen.com/). Leaf material was ground in liquid nitrogen, mixed with extraction buffer (Chang et al. 1993) and incubated at 65°C for 20 min. Samples were extracted with chloroform and centrifuged at 8,000 g for 30 min. RNA was precipitated overnight at 4°C with one-third volume of 8 M LiCl, centrifuged for 1 h at 8,000 g at 4°C, resuspended in 500 μ l RLT Qiagen buffer, and purified with the Qiagen RNeasy mini-kit according to the manufacturer's instructions. The RNA was treated with DNase I (Roche; http://www.roche-applied-science.com) for 30 min at 37°C, extracted with phenol/chloroform (3:1) and precipitated with 3 M Na acetate, pH 5.5 and ethanol using standard procedures. Poly A+ RNA was purified using a Micro-FastTrack 2.0 kit (Invitrogen; http://www.invitrogen.com/) according to the manufacturer's instructions.

Elicitor-induced cDNAs were generated by suppression subtractive hybridization (SSH) (Diatchenko et al. 1996) using the PCR-select cDNA subtraction kit (BD Biosciences Clontech; http:// www.bdbiosciences.com/clontech/) according to the manufacturer's instructions. Briefly, 2 μ g poly A+ RNA from control and defense-elicited leaves were used for synthesis of the driver and tester cDNA pools, respectively; 2 μ g skeletal muscle poly A+ RNA were used for synthesis of a control driver cDNA pool to assess subtraction efficiency (see below). Driver and tester cDNAs were digested with RsaI, phenol/chloroform extracted, ethanol precipitated and resuspended in water. Tester cDNA was then split into two pools, each of which was ligated to a different adapter (supplied in the cDNA subtraction kit). An unsubtracted tester control was prepared as described by the manufacturer to serve both as a positive control for ligation and a negative control for subtraction. Subtractive hybridization and PCR amplification were carried out according to the manufacturer's protocol with the following changes. Primary PCR was performed for 30 cycles (94°C, 10 s; 63°C, 30 s; 71°C, 90 s). Secondary PCR was performed for 14 cycles (94°C, 10 s; 66°C, 30 s; 72°C, 90 s). PCR products from both the primary and secondary PCR reactions were analyzed according to the manufacturer's instructions to ensure the success of the subtraction. A control subtraction was performed using skeletal muscle cDNA as a driver and skeletal muscle cDNA spiked with *Hae*III-digested $\phi \chi 174$ DNA as a tester (see kit for details). Subtracted cDNAs were cloned into the pCR4-TOPO vector and transformed into One Shot chemical competent *Escherichia coli* (Invitrogen), plated on LB, 1.5% Difco agar (Becton Dickinson; http://www.bd.com/clinical/products) supplemented with 75 mg l⁻¹ ampicillin and grown overnight at 37°C.

Differential screening

Colonies were picked and transferred to 384-well microtiter plates containing LB/8% glycerol supplemented with 75 mg l⁻¹ ampicillin using a QPix2 robot (Genetix; http://www.genetix.com/ productpages/genomics.htm) and grown overnight at 37°C. Bacterial clones were arrayed in six replicates onto 22×22 cm² nylon membranes using a QPix2 robot. The membranes were placed on LB agar plates supplemented with 75 mg l⁻¹ ampicillin and incubated at 37°C. The next day, colonies were lysed in situ and the resulting cDNAs were fixed to membranes according to the methods of Green et al. (2002).

Membranes were prehybridized in 10 ml ExpressHyb solution (Clontech) supplemented with 100 μ g ml⁻¹ salmon sperm DNA and 100 μ l Differential Screening Blocking Solution (Clontech) for 3 h at 72°C. Forward and reverse subtracted cDNAs were generated as above for use as hybridization probes. Probes (100 ng) were labeled with α -³²P-dCTP using the Megaprime DNA labeling kit (Amersham; http://www.apbiotech.com/) and added directly to the prehybridization solution. Membranes were first hybridized with the reverse subtracted (control) probe. Hybridization was carried out at 72°C for 20-24 h. Membranes were washed twice at 68°C in 2× sodium chloride/sodium citrate (SSC), 0.5% sodium dodecyl sulfate (SDS) for 20 min, and twice at 68°C in 0.2× SSC, 0.5% SDS. Radiographic imaging was performed via storage phosphor imaging (Molecular Dynamics; http://www.mdyn.com/). Membranes were stripped by boiling in 0.5% SDS for 20 min, washed in 0.4 N NaOH at 42°C for 20 min, followed by two washes in 0.5 M Tris-HCl (pH 7.5) at 25°C. Hybridization with the forward subtracted probe and subsequent washes were carried out as above.

Identification of up-regulated genes

Upregulated genes were identified using the ArrayVision software package (Imaging Research; http://www.imagingresearch.com/). Each cDNA was represented six times on each membrane. Signal intensity for each spot was measured as the normalized density (nDens). Briefly, the density value for each spot (sDens) was determined to be the measured density minus the background in the area surrounding each spot. The average sDens for all spots was considered the reference density value, (nDens = sDens/sRef). Differential density analysis was performed by dividing the experimental nDens by the control nDens for each spot [nDens (exp)/ nDens (cont)]. Those clones that showed a ratio of 2.0 or greater in at least four of the six replicates were designated as up-regulated clones.

cDNA sequencing and analysis

Single-pass DNA sequencing was carried out with the BigDye Terminator Cycle Sequencing Kit (Applied Biosystems; http:// www.appliedbiosystems.com/), using an ABI Prism 3700 DNA analyzer (Applied Biosystems). Vector trimming and contig assembly were performed using ContigExpress application in the VectorNTI software package (Informax; http://www.informaxinc.com/). Sequences were considered members of a contig if they were at least 85% identical in a 20 bp overlap. The resulting consensus sequence for each contig and the sequence for each EST not included in any contig were considered the unigene set. The predicted unigene sequences were used to query the predicted protein set of *Arabidopsis thaliana* ecotype Columbia, *Oryza sativa* cv. japonica, and the Plant Gene Indices from the Institute for Genomic Research (TIGR, http://www.tigr.org/) using BLASTX (Altschul et al. 1990). Unigenes with no significant match in these databases were then used to query the non-redundant nucleotide database at GenBank (http://www.ncbi.nlm.nih.gov/) using BLASTN and the non-redundant protein database maintained at GenBank using BLASTX. Matches to sequences in the database were reported if $E \le 10^{-6}$.

Sequences were assigned to functional classes using a combination of methodologies. Cacao sequences were used to identify the most closely related *Arabidopsis* sequences using the following resources: BLAST (Altschul et al. 1990), the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (http://www.genome.ad.jp/ kegg), and the gene families available at The Arabidopsis Information Resource (TAIR; http://www.arabidopsis.org). Functional classes were assigned to each cacao sequence based on that of its most closely related *Arabidopsis* sequences *A. thaliana* database (MAtDB) [(http://mips.gsf.de/proj/thal/db/)].

Results and discussion

We have undertaken a gene discovery project aimed at identifying ESTs representing cacao genes expressed early in the defense response. In a recent cacao gene discovery program, Jones et al. (2002) identified 1,380 unigenes from a data set containing 4,455 ESTs (69%) redundancy) from untreated leaves and beans. Slightly more that 3% of their unigene sequences were predicted to encode defense-associated genes. In order to maximize our efforts to identify defense genes in cacao, we generated subtracted, normalized cDNA libraries from leaves treated with the following defense signaling molecules: the salicylic acid analog BTH, methyl jasmonate and ethylene (MJE), and the elicitor-like protein, Nep1 (Bailey 1995). Subtraction and normalization was carried out to enrich the libraries for cDNAs representing lowabundance genes or genes expressed in response to the above treatments. Analysis of the libraries shows that the cDNA inserts ranged from 100 bp to 1.1 kb, with an average size of 486 bp (*N*=100; SD=175).

Identification of upregulated clones

cDNA clones representing genes upregulated by defense inducers were identified by differential screening. Each library was separately screened with cDNA probes from both control and treated leaves. For example, the BTH library was screened with cDNA probes from both control and BTH-treated leaves. Similarly, Nep1 and MJE libraries were screened with probes from control and Nep1or MJE-treated leaves. In all, 8,600 cDNA clones (2,688 BTH, 3,224 MJE, 2,688 Nep1) were screened, and 475 upregulated clones were identified (139 BTH, 211 MJE, 125 Nep1). Overall, 5.5% of the cDNAs in our libraries were identified as upregulated, slightly lower than the percentages (7-16%) reported by other recent studies (Wang et al. 2002; Cramer and Lawrence 2004). One possible explanation for this lies in our experimental design. We specifically constructed our libraries from poly A+ RNA isolated from leaves collected 30 min to 2 h after each treatment in order to identify early defenseinduced genes. As such, transcripts for some defense genes may not have had sufficient time to accumulate.

Contig assembly

All 475 upregulated cDNA clones and 1,639 randomly chosen cDNA clones across all libraries (996 BTH, 265 MJE, 378 Nep1) were isolated and sequenced. Contig assembly analysis was performed to determine the number of different sequences present. The 2,114 ESTs in our data set were assembled into 1,256 unigenes (41% redundancy). A full listing of all unigenes, the ESTs comprising each, and the corresponding GenBank accession numbers can be viewed at the following website: http://guiltinanlab.cas.psu.edu/Research/Cocoa/genomics.htm.

A total of 330 upregulated genes are represented in the unigene set. Among these, 68 were unique to the BTH library, 102 to the Nep1 library, and 154 to the MJE library. One sequence (21 kDa seed protein/trypsin inhibitor) was found in all three libraries. Three were found in both BTH and Nep1 libraries (60S ribosomal protein, carbonic anhydrase, and a sequence with no significant match). Two were found in both the BTH and MJE libraries (heat shock protein, and a sequence with no significant match).

Sequence annotation

Putative functions were assigned to the predicted protein for each sequence in the unigene set. Overall, 865 of the unigenes (68.9%) matched annotated plant genes (including hypothetical or unknown proteins). The remaining 391 unigenes (31.1%) did not match other sequences in the database. Table 1 shows BLAST scores and annotations for a subset of the unigenes representing genes whose expression was upregulated following treatment with inducers of defense responses (see below). A complete listing of the BLAST scores and annotations can be viewed at the following web site: http://guiltinanlab. cas.psu.edu/Research/Cocoa/genomics.htm.

Functional classification

The 865 unigene sequences with matches to previously identified plant genes were assigned to functional classes es according to MIPS (http://mips.gsf.de/proj/thal/db/) (Fig. 1a). The following functional classes were used: growth (cell growth, cell division and DNA synthesis), defense (cell rescue, defense, cell death and ageing), signaling (cellular communication/signal transduction), cellular organization, transport (cellular transport and transport mechanisms, and transport facilitation), energy, metabolism, transcription, protein synthesis, and protein destination. Twenty-nine percent of the 865 annotated

Table 1 Annotations and BLAST scores for cacao leaf unigene sequences representing genes whose expression is upregulated by inducers of the defense response. Sequences are grouped by functional class. Accession numbers beginning with At correspond to sequences from Arabidopsis and can be accessed at TAIR (http:// www.arabidopsis.org). TIGR accession numbers are preceded by a three-letter code that indicates the plant gene index from which the sequence was retrieved. ath Arabidopsis, gar cotton, gma soybean, han sunflower, les tomato, lja lotus, *lsa* lettuce, *mcr* ice plant, mtr Medicago, osa rice, stu potato, tae wheat, zma maize. The TIGR plant gene indicies can be accessed at http:// www.tigr.org/tdb/tgi/ plant.shtml. Elicitors used in libraries: BTH Benzothiadiazole, MJE methyl jasmonate and ethylene, Nep1 elicitor-like protein Nep1

Annotation	BLAST score	Accession number	Library
Cell growth, cell division and DNA synthesis			
Pasticcino 1 protein	5.00×10^{-29}	gma_TC137684	BTH
Alpha-tubulin	2.00×10^{-35}	gar_TC8581	Nep1
Cell rescue, defense, cell death and ageing	1 00 10-65	EC2 1(0)	DELL
Chitinase-like protein	1.00×10^{-84}	mcr_TC3160	BTH
Reta-cyanoalanine synthese	2.00×10^{-31}	$gma_TC131723$	MIF
Class I chitinase	2.00×10^{-77}	gar TC11178	MJE
clpB heat shock protein-like	1.00×10^{-94}	les_TC99670	MJE
DnaJ protein homolog	1.00×10^{-91}	gar_TC9182	MJE
dnaK-type molecular chaperone	1.00×10^{-41}	gma_TC134160	MJE
Heat shock protein 70 cognate	10^{131}	gar_TC9297	MJE
Manganese superoxide dismutase 1	2.00×10^{-87}	gar_TC9481	MIE
Regulatory protein NPR1	1.00×10^{-16}	At3g57130	MJE
RSH-like protein	2.00×10^{-64}	les_TC104278	MJE
SRG1 protein-related protein	4.00×10^{-52}	mtr_TC54568	MJE
UDP-glucose glucosyltransferase-like protein	4.00×10^{-53}	gma_TC128457	MJE
Blue copper protein	6.00×10^{-10}	gma_TC124801	Nepl
Class IV chitinase	4.00×10^{-16}	ath_1C155/43 ath_TC172573	Nep1
Monodehydroascorbate reductase	2.00×10^{-27}	gar TC8977	Nep1
Zeaxanthin epoxidase	9.00×10^{-09}	lsa TC3266	Nep1
Cellular communication/signal transduction			
Gamma response I protein	1.00×10^{-55}	At3g52120	BTH
Protein kinase PK4	8.00×10^{-25}	At1g29230	BTH
Putative AtBgamma protein	4.00×10^{-73}	gma_TC124086	BTH
AIMPK9 Colretioulin	1.00×10^{-34}	At1g53510	MJE
Casein kinase-like protein	1.00×10^{-60}	ath TC183419	MIE
Ethylene response sensor	3.00×10^{-61}	gar TC11967	MJE
G protein-coupled receptor	3.00×10^{-49}	At1g52920	MJE
GTP-binding protein	1.00×10^{-58}	At5g11480	MJE
Protein phosphatase type 2C	5.00×10^{-53}	At1g07430	MJE
Protein tyrosine phosphatase	2.00×10^{-26}	gar_TC11616	MJE
Rac GTPase activating protein 2	4.00×10^{-19}	lia TC2660	MIE
Somatic embryogenesis receptor-like kinase	4.00×10^{-57}	At1g34210	MJE
Mitogen activated protein kinase kinase	5.00×10^{-49}	mtr_TC53957	Nep1
Probable protein phosphatase 2C	4.00×10^{-55}	mtr_TC45036	Nep1
Protein phosphatase type 2C	8.00×10^{-74}	ath_TC162732	Nep1
Receptor-like kinase	2.00×10^{-93}	At1g34210	Nep1
Cellular organization	8.00×10	aun_1C102229	Nepi
Ankyrin-like protein	1.00×10^{-36}	At1904430	BTH
Caffeoyl-CoA O-methyltransferase	4.00×10^{-87}	gma_TC132746	BTH
ETAG-A3	2.00×10^{-18}	gar_TC9458	BTH
Extensin-like protein	5.00×10^{-23}	At1g49750	BTH
Extracellular dermal glycoprotein (EDGP)	3.00×10^{-13}	At1g03230	BTH
Annevin	3.00×10^{-80}	Al3g34000	BIH
Cellular transport and transport mechansims	1.00×10	gal_1C0000	IVIJ L
ADP-ribosvlation	4.00×10^{-85}	osa TC75953	MJE
Sugar transporter protein	10^{-102}	mtr_TC43602	MJE
Synaptobrevin 7B	7.00×10^{-91}	At1g04750	MJE
Vacuolar processing enzyme	3.00×10^{-62}	gar_TC9509	Nep1
Energy Chlorenheilt of hinding matein	4.00, 10-57	-t TC52299	DTU
Chlorophyll a/b binding protein	4.00×10^{-81}	stu_1C53388	BIH
Chlorophyll a/b-binding protein	7.00×10^{-54}	gma_TC132158	BTH
Ferredoxin I	8.00×10^{-50}	lja TC2218	BTH
Fructose bisphosphate aldolase	2.00×10^{-12}	Åt2g21330	BTH
NADH dehydrogenase	4.00×10^{-61}	gar_TC10105	BTH
NADH-plastoquinone oxidoreductase subunit J	1.00×10^{-28}	lja_NP459509	BTH
Oxygen-evolving enhancer protein 3-2	1.00×10^{-30}	gma_TC120160	BTH
Photosystem 1 chain II precursor	3.00×10^{-09}	mcr_1C3589	BIH
Photosystem II 10 kDa polypentide	9.00×10^{-28}	gma TC132143	MIE
Photosystem II protein X precursor	8.00×10^{-20}	ath_TC149445	MJE

Table 1 (continued)

Annotation	BLAST	Accession	Library
	score	number	5
Thiorodovin m	2.00×10^{-29}	A +1 a02675	MIE
Inforedoxin-m	3.00×10^{-35}	Alig03075	MJE
Fructose bisphosphate aldolase	8.00×10 ⁻¹⁹	At2g21330	Nepl
H+-transporting ATP synthase-like protein	5.00×10^{-19}	gar_TC9440	Nepl
NADH dehydrogenase	0	ath_TC193046	Nep1
NADH-ubiquinone oxidoreductase	1.00×10^{-39}	gma_TC133555	Nep1
Photosystem I protein psaH precursor	2.00×10^{-16}	les TC99254	Nep1
Photosystem I reaction center subunit VI	9.00×10^{-11}	gma TC119102	Nep1
Probable fructose bisphosphate aldolase	1.00×10^{-39}	gar TC8653	Nen1
Ribulose-1 5-bisphosphate carboxylase/oxygenase	1.00×10^{-40}	gar_NP385866	Nep1
activase ?	1.00×10	gai_111 505000	пері
Dibulase 1.5 hisphasehata asehawulasa/	1.00×10^{-74}	201 ND205066	Non1
Ribulose-1,5-bisphosphate carboxylase/	1.00×10	gar_INP383800	Nepi
oxygenase activase 2			
Metabolism	0.00.10=77		
Acetyl-CoA carboxylase	9.00×10	At1g36050	BTH
Acyl-CoA oxidase	3.00×10^{-50}	gma_TC135657	BTH
Asparagine synthetase	5.00×10^{-45}	han_TC2557	BTH
Glutamvl-tRNA reductase 1	6.00×10^{-58}	les TC98501	BTH
Lil3 protein	2.00×10^{-69}	gar TC12144	BTH
Methionine synthese	10^{-103}	$gar_{TC} TC 8601$	BTU
Methylanatatashydaafalata dahydaaaaaaa	500×10^{-20}	$gar_TC11690$	
weunytenetetranydrototate denydrogenase	J.00X10	gar_1C11080	
Carbonic anhydrase isoform	2.00×10 00	gar_ TC11928	BTH/Nep1
12-oxophytodienoate reductase OPR2	2.00×10^{-19}	gma_TC132909	MJE
4-methyl-5(b-hydroxyethyl)-thiazole monophos-	3.00×10^{-47}	At3g14990	MJE
phate biosynthesis protein		-	
ACS12	1.00×10^{-62}	stu_TC48077	MJE
Alpha-amylase	2.00×10^{-15}	$At_{9}^{-}69830$	MJE
Alpha-glucosidase I	2.00×10^{-22}	mtr TC46782	MIE
Ammonium transmorter	2.00×10^{-52}	TC40702	MIE
	6.00×10^{-53}	stu_1C47240	MIE
Anthranilate N-benzoyltransferase-like	6.00×10^{-14}	ath_1C161680	MJE
ATP citrate lyase	6.00×10^{-14}	gar_TC17391	MJE
Carotenoid 9 10–9' 10' cleavage dioxygenase	1.00×10^{-95}	gma_TC120527	MJE
Cytochrome P450	4.00×10^{-07}	ath_NP034755	MJE
Cytochrome P450	4.00×10^{-94}	ath_TC174971	MJE
Galactinol synthese	7.00×10^{-46}	$A_{10}60470$	MIE
GenE protein	2.00×10^{-92}	gma TC120513	MIE
Churchidere II alabe suburit	2.00×10^{-13}	$g_{111} = 1C120313$	MIE
	5.00×10^{-73}	atii_1C102432	MJE
Glycine dehydrogenase	1.00×10	mtr_1C51393	MJE
Sulfolipid synthase	8.00×10^{-43}	ath_TC152680	MJE
Neutral invertase	9.00×10^{-11}	gma_TC121654	MJE
O-linked GlcNAc transferase	1.00×10^{-60}	les_TC98302	MJE
Omega-6 fatty acid desaturase	1.00×10^{-10}	han TC526	MJE
Porphobilingen deaminase (Hydroxymethyl-	5.00×10^{-19}	stu TC53966	MJE
hilane synthase)	5.00//10	stu_1055700	111012
D Drotain productor	1.00×10^{-62}	atu TC52677	MIE
	1.00×10	stu_1C55077	MIE
Probable thiamin biosynthesis protein	2.00×10^{-40}	nan_ICI559	MJE
Putative acyl-CoA synthetase	1.00×10	stu_1C53563	MJE
Pyruvate dehydrogenase	10-111	gar_TC9199	MJE
Shikimate kinase	7.00×10^{-52}	les_TC101392	MJE
Shikimate kinase	1.00×10^{-54}	les_TC101392	MJE
1-Aminocyclopropane-1-carboxylate deaminases	9.00×10^{-71}	At1g48420	Nep1
Magnesium chelatase subunit	10^{-115}	gma TC120638	Nen1
Magnesium energiaise subunit Methylmalonate semi-aldehyde dehydrogenase	200×10^{-94}	At2a1/170	Nep1
nift Like protein	2.00×10	At2g1+170	Nepi
mio-like protein	5.00×10	A14g22220	Nepi
Nitrate reductase	3.00×10^{-22}	mcr_1C4108	Nepl
Phenylalanine-ammonia lyase	1.00×10^{-97}	gar_TC10686	Nep1
Phytoene synthase	5.00×10^{-94}	gar_TC13167	Nep1
Putative ribonuclease E	6.00×10^{-28}	Ăt2g04270	Nep1
S-Adenosylmethionine decarboxylase	2.00×10^{-14}	lia TC1942	Nen1
Protein destination	2.00.010	-Ju_101712	T CP1
ATP dependent Cln protesse	4.00×10^{-12}	mcr TC3521	втн
E hay containing tubby for the metals	5 00×10 ⁻⁵¹	At1~25220	
r-box containing tubby family protein	5.00×10^{-13}	At1g25280	BIH
N-AcetyIgIucosaminyI-phosphatidylinositol	2.00×10^{-13}	At3g57170	RIH
biosynthetic protein GPI1			
Polyubiquitin	2.00×10^{-81}	At4g02890	BTH
21 kDa seed protein precursor	8.00×10^{-61}	gar TC11652	BTH/MJE/
r r r		0	Nen1
Chloroplast EtsH protease?	10^{-109}	Δt1g50250	MIF
Chloroplast membrane protein (ALDINO2)	500×10^{-94}	At1a24400	MIE
Chlorentest membrane protein (ALBINUS)	5.00X10 6.00×10 ⁻¹⁸	Alig24490	
Chioroplast membrane protein (ALBINO3)	0.00×10	gma_1C121213	MJE

Annotation	BLAST	Accession	Library
	score	number	-
O Sieles lucerratein enderentidese	4.00×10-35	A+5~26110	MIE
Prohable A A A tune ATPase	4.00×10^{-65}	Al3g20110	MIE
Probable legumain	2.00×10^{-54}	siu_1C_{34004}	MIE
Probable leguillalli Drobal aminopontidasa lika protoin	7.00×10^{-87}	gilla_1C119971 oth_TC152522	MIE
Pitotyi animopeptidase-like pitotelli Putativa abaparanin	7.00×10^{-08}	l_{10} TC100625	MIE
Ibiquitin specific protocol 16	2.00×10^{-19}	oth TC172656	MIE
Vaa Pro aminopentidase 2	10^{-104}	$ mtr_TC1/3030 $	MIE
EK506-binding protein (pentidylprolyl isomersse)	$10^{10} \times 10^{-19}$	$m_{2} TC13/30/$	Nep1
Intracellular protease PfnI family	3.00×10^{-65}	$\Delta t_{3\sigma}^{10}$	Nep1
Probable cullin protein	2.00×10^{-35}	mtr TC 52234	Nep1
Ubiquitin extension protein	1.00×10^{-39}	les TC98489	Nep1
Protein synthesis	1.00/10	105_1050105	перт
30S ribosomal protein S1	10^{-108}	les TC101014	BTH
40S ribosomal protein S2	3.00×10^{-49}	gar TC8811	BTH
60S ribosomal protein L35	4.00×10^{-54}	gar TC9254	BTH
Ribosomal protein-like	2.00×10^{-15}	ath TC191904	BTH
RuBisCO subunit binding-protein beta subunit	2.00×10^{-49}	gma_TC132417	BTH
RuBisCO subunit binding-protein beta subunit	9.00×10^{-47}	gma_TC132417	BTH
60S ribosomal protein L7	2.00×10^{-69}	gar_TC9241	BTH/Nep1
30S RIBOSOMAL PROTEIN S20	4.00×10^{-34}	At3g56010	MJE
60S RIBOSOMAL PROTEIN-like	6.00×10^{-51}	gar_TC9511	MJE
RRM-containing protein	6.00×10^{-55}	At4g00830	MJE
30S ribosomal protein S10	6.00×10^{-35}	At3g13120	Nep1
40S ribosomal protein S18	3.00×10^{-17}	zma_TC130204	Nep1
Eukaryotic translation initiation factor 5 (eIF-5)	2.00×10^{-54}	mcr_TC4001	Nep1
Ribosomal protein 30S subunit	5.00×10^{-43}	At5g24490	Nep1
Ribosomal protein L1 protein	3.00×10^{-33}	gma_TC120499	Nep1
Ribosomal protein L36a.e	4.00×10^{-55}	lsa_TC3307	Nep1
Transcription	55		
High mobility group protein HMG-beta1	3.00×10^{-55}	gar_TC9595	BTH
Histone deacetylase	10^{-108}	gma_TC136421	BTH
Probable splicing factor	2.00×10^{-41}	ath_TC154562	BTH
RNA splicing protein	4.00×10^{-46}	hvu_TC31616	BTH
Alanyl-tRNA synthetase	2.00×10^{-20}	gma_TC137409	MJE
ARID DNA binding domain	4.00×10^{-10}	Atlg/6510	MJE
bZIP transcriptional activator	1.00×10^{-17}	gma_1C135846	MJE
DNA-binding protein WRKY3	1.00×10	mtr_1C53525	MJE
DNA-directed KNA polymerase II	0	mtr_1C52887	MJE
DRHI DEAD box protein-like	9.00×10^{-100}	ath_1C16/9/2	MJE
EINS-like protein	10 1 00×10 ⁻¹³	IJa_IC524	MIE
DILADOR motoin	1.00×10^{-51}	$a m_1 TC 180200$	NIE
PHAP2B protein Probable DNA balianse	5.00×10^{-31}	gma_1C154709	MIE
WD1521	5.00×10^{-37}	gar_TC10506	NIE
WDIJ21 Homoodomain CLADDA2 like 1 metain	3.00×10^{-20}	gar_TC10390	Nor1
Transcriptional regulator	4.00×10^{-12}	$gal_1C15507$ At/a00050	Nep1
Transport facilitation	2.00×10	A14g00050	Nepi
Porin-like protein	3.00×10^{-23}	gar TC10066	втн
Aguaporin	6.00×10^{-45}	$d_{12} = 10000$	MIE
ATP carrier protein	5.00×10^{-22}	tae TC 56538	MIE
MgATP-energized glutathione S-conjugate nump	2.00×10^{-28}	$gm_{2} TC121244$	MIE
Pentide transporter	5.00×10^{-33}	At1018880	MIE
Putative ABC transporter protein	1.00×10^{-68}	At1g17840	MIE
Probable glutamate receptor	7.00×10^{-61}	ath TC169748	Nep1
Transporter protein	3.00×10^{-30}	stu TC43204	Nep1
Triose phosphate/phosphate translocator	2.00×10^{-10}	gma_TC120047	Nep1
		~ -	

sequences had no known function, as they matched neither hypothetical nor unknown sequences (Fig. 1a). The largest class of sequences with known functions was predicted to play roles in metabolism (17%). Eleven percent are predicted to function in energy. The majority of the remaining sequences are distributed among transcription (9%), defense (8%), protein synthesis (6%), protein destination (7%), and signaling (5%). Less than 5% of the sequences were assigned to cellular organization, growth or other functional classes such as ionic homeostasis or transposable elements. The functional distribution of unigene sequences within each library was similar for most classes to the data as a whole; however, there were some specific differences.

Fig. 1 Distribution of putative functional classes of **a** all annotated unigene sequences from cacao leaves treated with inducers of the defense response and the annotated unigene sequences representing candidates for genes upregulated by **b** the salicylic acid analog, benzothiadiazole (BTH), **c** methyl jasmonate/ethylene (MJE), and **d** the elicitor-like protein Nep1

BTH library

BTH is a salicylic acid analog that has been shown to trigger systemic acquired resistance (SAR) and pathogenesis-related (PR) gene expression via the salicylic acid signaling pathway (Gorlach et al. 1999). Seventy-four genes upregulated by BTH are represented in the unigene set. The functional distribution of BTH-induced genes shows, relative to the data as a whole, that there was an increase in the percentage of genes involved in cellular organization and protein synthesis, and a decrease in the percentage of genes and transport (Fig. 1b).

MJE library

Ethylene and jasmonates have been shown to play a role in the regulation of wound responses and in defense against some pathogens (Ton et al. 2002). A recent microarray study in Arabidopsis showed that approximately 50% of genes induced by ethylene were also induced by jasmonate (Schenk et al. 2000). In order to maximize our efforts in identifying ethylene-regulated and jasmonateregulated genes, cacao leaves were simultaneously treated with both inducers.

A total of 157 genes upregulated by MJE are represented in the unigene set. The functional distribution of MJE-induced genes shows that there was a slight increase in the percentage of genes involved in defense and signaling. In addition, there was a large decrease in the percentage of genes with a function in energy (Fig. 1c).

Nep1 library

Nep1 is a fungus-derived protein that induces a number of processes similar to those induced by defense elicitors, such as an increase in extracellular pH, K⁺ efflux, reactive oxygen species (ROS) production, ethylene production, hypersensitive cell death and changes in gene expression (Keates et al. 2003); 106 genes upregulated by Nep1 are represented in the unigene set. Overall, the functional distribution of Nep1-induced clones was more similar to the data set as a whole than to either the BTH- or MJE-induced clones. However, there was a large decrease in the percentage of clones that function in transcription (Fig. 1d).

The main objective of this study was to identify genes expressed early in cacao defense responses. Overall, 8% of the sequences in our data set are similar to genes with bona fide defense functions. Among BTH-induced sequences, the percentage is lower (4%). There are two possible explanations for this observation. First, many of the sequences in our libraries were less than 500 bp. As such, strong homology to genes with known defense functions could not be definitively assigned. For example, some of our induced sequences share weak similarity to cytochrome P450-like sequences, protein kinase-like sequences or genes encoding WRKY-like transcription factors. Some of these sequences are likely to function in defense; however, in the absence of strong homology to specific sequences with characterized defense functions, the cacao sequences were conservatively assigned to more general functional classes (metabolism, signaling or transcription), potentially under-representing the percentage of defense-related genes in our libraries. Second, because we specifically constructed our libraries from poly A+ RNA collected 30 min to 2 h after treatment in order to identify early defense-induced genes, there may not have been sufficient time for transcripts for some defense genes to accumulate. For example, transcripts for some Arabidopsis PR genes do not accumulate to significant amounts until 4-8 h after treatment (Lorenzo et al. 2003). As such, the identification of some defense genes may require the construction of additional libraries with extended time periods following application of defense signaling molecules.

The assignment of genes to a given functional class does not preclude a defense-related function for that gene. For example, sequences assigned to the metabolism or transcription classes may play roles in the biosynthesis of defense-related secondary metabolites or in the transcriptional activation of other defense-related genes. As illustrated below, genes induced by the defense signaling molecules from a variety of functional classes have potentially important defense-related functions. Defense and defense-related genes expressed in cacao leaves

Eight percent of the genes upregulated by defense inducers were similar to known defense genes in other plants. Of these, one-third were predicted to encode heat shock proteins and were isolated from the MJE library. Heat shock proteins are a large class of proteins that function as molecular chaperones by directing the refolding and activation of proteins that have become unfolded or insoluble due to environmental stresses (Queitsch et al. 2002).

A sequence similar to NPR1 was also induced. NPR1 is a transcriptional regulator that mediates the transcription of salicylic acid- and jasmonate-responsive genes, including many PR genes (Pieterse et al. 1998). Several PR genes were represented, such as SRG1, a gene of unknown function that is a member of the PR-10 family (Truesdell and Dickman 1997), and chitinases, members of the PR-3 and PR-4 families (Neuhaus et al. 1999). Chitinases have been shown to enhance resistance against fungal pathogens, presumably by degrading fungal cell walls (Neuhaus et al. 1999).

There were also several induced genes predicted to encode proteins involved in antioxidant defense, such as two superoxide dismutases, dehydroascorbate reductase, zeaxanthin epoxidase, and blue copper proteins. Antioxidant defense proteins function by reducing various ROS produced in response to pathogens or other stresses, thereby preventing the potentially overwhelming effects that ROS could pose to the plant itself (Bolwell et al. 2002).

Metabolism

With the exception of genes of unknown function, genes with predicted roles in metabolism composed the largest class induced by the defense signaling molecules. For example, P-Protein is a subunit of glycine decarboxylase and is the major pathogen-induced nitric oxide (NO) synthesizing enzyme (Chandok et al. 2003). NO is a signaling molecule that plays a role in the activation of the hypersensitive response (HR), induction of defense gene expression and accumulation of antimicrobial phytoalexins (Delledonne et al. 2001).

In addition, we identified several genes involved in the biosynthesis of defense-related secondary metabolites (phenylpropanoids, carotenoids, isoprenoids, and phytoalexins). Collectively, these metabolites function in a variety of defense-related processes, including the induction of wound response, antimicrobial and antifungal defense, and antioxidant defense (Dixon 2001).

Signaling

Eight percent of the upregulated genes are predicted to play roles in signaling. These sequences encode protein kinases, protein phosphatases, B-gamma proteins, G-proteins and calcium-binding proteins. The signaling pathways mediated by these proteins could regulate a variety of defense responses, such as the formation of ROS, the induction of HR, production of a phytoalexins, and the expression of defense-related genes (Zhang and Klessig 2001).

Cellular organization

Several genes upregulated by defense signaling molecules are predicted to function in cellular organization, particularly in modification of the cell wall. For example, genes encoding extensin (hydroxyproline-rich glycoprotein) and caffeoyl-CoA O-methyltransferase (lignin biosynthesis) were induced. Lignification and cross-linking of extensins (and other cell-wall proteins) in response to pathogens are proposed to form a physical barrier to further pathogen attack (Showalter 1993).

Transcription

The defense signaling molecules also induced several genes encoding a variety of transcription factors, including an NPR1-like protein, WRKY and bZIP proteins, and EIN3. In addition, there were also several genes predicted to encode other transcriptional regulators, such RNA helicases, splicing factors, histones or other DNA binding proteins. Collectively, these proteins could serve to regulate the transcription of a variety of defense-related genes (Singh et al. 2002).

Protein synthesis and protein destination

Approximately 14% of the induced genes are predicted to function in protein synthesis or protein destination. Almost all the genes with predicted roles in protein synthesis encoded ribosomal proteins or other proteins (translation initiation factor) that likely function in translation. Among proteins predicted to function in protein destination, approximately one-half encoded proteases. Protease activities have been implicated in cell death during HR, but the specific proteases involved have not been identified (Beers et al. 2000). In addition to proteases, we identified a protease inhibitor—a 21 kDa seed protein (Kunitz trypsin inhibitor)—which was induced by all the elicitor treatments in our study. This trypsin inhibitor was first isolated from cacao seeds and is thought to function in defense against herbivorous insects (Dodo et al. 1992).

We also identified several induced genes that are predicted to function in the ubiquitin/26S proteasome pathway, including ubiquitin, cullin, F-box proteins and an AAA-type ATPases. The ubiquitin/26S proteasome pathway regulates ubiquitin-mediated breakdown of many proteins and plays a key role in the regulation of a variety of processes including regulation of defense-related genes (Devoto et al. 2003).

Energy

In addition to genes with defense-related functions, defense signaling molecules induced several genes encoding proteins predicted to function in photosynthesis, such as ferrodoxin, chlorophyll a/b binding proteins, rubisco and oxygen-evolving enhancer proteins. This is consistent with a previous report suggesting that there may be some cross-talk between defense pathways and the phytochrome A/red light mediated signaling pathway (Schenk et al. 2000). In addition to their energy roles, some of these proteins may have defense functions. For example, Yang et al. (2003) have recently shown that oxygenevolving enhancer protein (OEE) is phosphorylated by a protein complex containing Wall-associated kinase 1, a PR protein required for survival of plants during the pathogen response (He et al. 1998). Activation of OEE by Wak1 is thought to modulate formation of ROS, which could function in defense signaling, the induction of defense-related genes, and the regulation of the HR (Yang et al. 2003).

Conclusions

In this study, we have identified 1,256 unigene sequences representing genes expressed in defense-elicited cacao leaves. Comparison of our unigene set to that of Jones et al. (2002) shows that only 10% of the sequences overlap (data not shown), giving rise to a combined unigene set of approximately 2,500 sequences. Annotation of the sequences shows that many had no significant match in the public databases. These sequences are a potentially valuable resource for identifying novel defense genes. In addition, candidate defense genes can be used to search for colocalization with QTLs associated with resistance to cacao diseases.

Little overlap was observed between the upregulated clones from each of the libraries suggesting that each defense-signaling molecule may regulate a unique set of genes. However, the number of clones sampled may have been insufficient to effectively address this issue. To this end, a synthetic oligonucleotide microarray representing sequences from the combined international data set has been constructed, and will be used to explore the regulatory interactions between defense signaling pathways. These studies will undoubtedly shed light on defense signaling pathways in cacao, and offer great potential for improvement of cacao disease resistance.

Acknowledgements We would like to thank Marlin Druckenmiller for help in sequencing, Kerr Wall and Alexander Richter for help in bioinformatics, Craig Praul for help with macroarray screening, and Sharon Pishak and other members of the Guiltinan lab for their invaluable contributions. In addition, we thank Masterfoods for providing their EST sequences. This work was supported in part by the American Cocoa Research Institute Endowed Program in the Molecular Biology of Cocoa, by Grants to M.J.G. from the American Cocoa Research Institute, the United States Department of Agriculture Office of International Research Programs, and from the Agricultural Experiment Station of The Pennsylvania State University (CRIS 3550).

References

- Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410
- Bailey BA (1995) Purification of a protein from culture filtrates of *Fusarium oxysporum* that induces ethylene and necrosis in leaves of *Erythroxylum coca*. Phytopathology 85:1250–1255
- Beers EP, Woffenden BJ, Zhao C (2000) Plant proteolytic enzymes: possible roles during programmed cell death. Plant Mol Biol 44:399–415
- Bennett AB (2003) Out of the Amazon: *Theobroma cacao* enters the genomic era. Trends Plant Sci 8:561–563
- Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) Apoplastic oxidative burst in response to biotic stress in plants: a threecomponent system. J Exp Bot 53:1367–1376
- Chandok MR, Ytterberg AJ, van Wijk KJ, Klessig DF (2003) The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex. Cell 113:469–482
- Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113– 116
- Cramer RA, Lawrence CB (2004) Identification of *Alternaria* brassicicola genes expressed in planta during pathogenesis of *Arabidopsis thaliana*. Fungal Genet Biol 41:115–128
- Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459
- Devoto A, Muskett PR, Shirasu K (2003) Role of ubiquitination in the regulation of plant defense against pathogens. Curr Opin Plant Biol 6:307–311
- Diatchenko L, Lau YFC, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Supression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025– 6030
- Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847
- Dodo, HW, Fritz PJ, Furtek DB (1992) A cocoa 21 kilodalton seed protein has trypsin inhibitory activity. Café Cacao 36:279–284
- Gorlach J, Volrath S, Knauf-Beiter G, Hengy G, Beckhove U, Kogel KH, Oostendorp M, Staub T, Ward E, Kessmann H, Ryals J (1999) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629–643
- Green, MT, Maller NC, Richmond SA, Morris D, Ball PR, Stephens SK (2002) Robust and sensitive nylon hybridization membrane suitable for high-throughput robotic arraying applications. Biotechniques 33:430–434
- He ZH, He D, Kohorn BD (1998) Requirement for the induced expression of a cell wall associated receptor kinase for survival during the pathogen response. Plant J 14:55–63
- Jones PG, Allaway D, Gilmour DM, Harris C, Rankin D, Retzel ER, Jones CA (2002) Gene discovery and microarray analysis of cacao (*Theobroma cacao* L.) varieties. Planta 216:255–264
- Keates SE, Kostman TA, Anderson JD, Bailey BA (2003) Altered gene expression in three plant species in response to treatment with Nep1, a fungal protein that causes necrosis. Plant Physiol 132:1610–1622
- Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

- McKenzie DJ, McLean MA, Mukerji S, Green M (1997) Improved RNA extraction from woody plants for the detection of viral pathogens by reverse transcription-polymerase chain reaction. Plant Dis 81:222–226
- Neuhaus JM (1999) Plant chitinases. In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC, New York
- Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in *Arabidop-sis*. Plant Cell 10:1571–1580
- Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624
- Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in *Arabidopsis* revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660
- Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23
- Singh K, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

- Ton J, Van Pelt JA, Van Loon LC, Pieterse CM (2002) Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in *Arabidopsis*. Mol Plant Microbe Interact 15:27–34
- Truesdell GM, Dickman MB (1997) Isolation of pathogen/stressinducible cDNAs from alfalfa by mRNA differential display. Plant Mol Biol 33:737–743
- Wang X, Wu P, Xia M, Wu Z, Chen Q, Liu F (2002) Identification of genes enriched in rice roots of the local nitrate treatment and their expression patterns in split-root treatment. Gene 297:93– 102
- Wood GAR, Lass RA (1985) Cocoa. Longman, New York
- Yang EJ, Oh YA, Lee ES, Park AR, Cho SK, Yoo YJ, Park OK (2003) Oxygen-evolving enhancer protein 2 is phosphorylated by glycine-rich protein 3/wall-associated kinase 1 in Arabidopsis. Biochem Biophys Res Commun 305:862–868
- Zhang Ś, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6:520–527