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Abstract

Arabidopsis has been reported to respond to phosphate (Pi) stress by arresting primary root growth and increasing 
lateral root branching. We developed a system to buffer Pi availability to Arabidopsis in gel media systems by charg-
ing activated aluminum oxide particles with low and sufficient concentrations of Pi, based on previous work in horti-
cultural and sand culture systems. This system more closely mimics soil chemistry and results in different growth 
and transcriptional responses to Pi stress compared with plants grown in standard gel media. Low Pi availability in 
buffered medium results in reduced root branching and preferential investment of resources in axial root growth. Root 
hair length and density, known responses to Pi stress, increase in low-buffered Pi medium. Plants grown under buff-
ered Pi conditions have different gene expression profiles of canonical Pi stress response genes as compared with 
their unbuffered counterparts. The system also eliminates known complications with iron (Fe) nutrition. The growth 
responses of Arabidopsis supplied with buffered Pi indicate that the widely accepted low-Pi phenotype is an artifact 
of the standard gel-based growth system. Buffering Pi availability through the method presented here will improve the 
utility and accuracy of gel studies by more closely approximating soil conditions.
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Introduction

Global food production must increase by 70% by 2050 (FAO, 
2009). Pressures due to climate change, and the increasing 
price of fertilizer (Elser et  al., 2014) will only exacerbate 
this challenge. Over half  of global agricultural land is low in 
available phosphorus (P), and this is especially true in trop-
ical regions such as sub-Saharan Africa, where the greatest 
population increases are expected to occur (Lynch, 2011). 

Understanding plant adaptation to low P availability is of 
inherent interest in plant biology, while also being strategic-
ally important for the development of more resilient, pro-
ductive agricultural systems (Vance et al., 2003).

P is an essential macronutrient, required in large quanti-
ties throughout plant growth and development. In soil, P is 
available to plants as soluble inorganic phosphate (Pi). Plants 
have developed various mechanisms to obtain and efficiently 
use Pi to cope with limited environmental availability, and 
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these adaptations have long been studied in a variety of spe-
cies. Ideotypes for maximum Pi uptake have been developed 
through modeling and empirical studies (Ge et al., 2000; Liao 
et al., 2001; Lynch and Brown, 2001, 2012; Ho et al., 2004; 
Wang et al., 2010b; Fang et al., 2011; Lynch, 2011; Richardson 
et al., 2011; Heppell et al., 2015). Phosphate is usually found 
in shallow soil layers (Heppell et al., 2016); therefore, shal-
low root growth angles and increased root growth in shallow 
soil layers that promote topsoil foraging are advantageous 
for Pi acquisition (Lynch, 2011; Miguel et al., 2013; White 
et al., 2013). Increased root hair density (RHD) also con-
tributes to enhanced Pi acquisition at minimal cost to the 
plant (Gahoonia and Nielsen, 1997, 2004; Bates and Lynch, 
2000, 2001; Ma et al., 2001; Brown et al., 2013). Reducing the 
carbon cost of roots through decreased living cortical area 
or reduced respiration improves maize and common bean 
growth under Pi-limiting conditions (Nielsen et al., 2001; 
Postma and Lynch, 2011; Lynch and Wojciechowski, 2015). 
Increasing arbuscular mycorrhizal symbioses and exploiting 
microbial P solubilization can enhance plant P acquisition 
(Smith and Read, 2010; Richardson and Simpson, 2011).

In fertile soil, P concentrations are 100- to 1000-fold lower 
than concentrations found in typical Arabidopsis growth 
media, with soil levels ranging from 1 μM to 10 μM P (Bieleski, 
1973). P availability and concentration are highly dynamic. P 
is bound and released from soil constituents into the soil so-
lution to maintain a small, soluble pool of plant-available Pi, 
which makes up 0.01% of total soil P (Kruse et al., 2015). Pi 
is bound by iron and aluminum oxides in acidic soils, and cal-
cium in alkaline soils, making the availability of P to plants 
dependent on the concentrations of these elements. Pi avail-
ability is also dependent on the soil pH, and the surface area 
and structure of the soil particles (Holford, 1997). These fac-
tors determine the buffering capacity or sorptivity of the soil, 
and small changes in the buffering capacity value can cause 
variations in plant P uptake by up to 50% (Heppell et  al., 
2016). P is constantly being precipitated and solubilized, 
and adsorbed and desorbed (Heuer et  al., 2017), resulting 
in a highly spatially and temporally dynamic system. In the 
rhizosphere, sharp gradients of Pi are formed as uptake of Pi 
at the root surface decreases the local Pi concentration. The 
rate of replacement is limited by the physical and chemical 
characteristics of the specific soil (Hinsinger, 2001). P bound 
to solid phases in the soil is maintained in equilibrium with 
the available Pi in the soil solution, which moves by diffu-
sion (Pierzynski and McDowell,2005). This dynamic process 
allows plant tissues to accumulate levels of P that are at least 
1000 times greater than the soluble soil concentration meas-
ured at a single moment in time (Raghothama, 1999).

Arabidopsis has served as an important model for under-
standing the molecular basis of Pi stress responses and adap-
tations. The large majority of these studies have employed 
gel-based media with unrealistically high nutrient availability. 
Gel systems allow direct observation of rapid and uniform 
growth, but differ greatly from natural soil environments. 
Here, we present a modified gel-based system that allows for 
rapid growth and easy observation of root development while 
more closely resembling natural Pi regimes in soil, since the Pi 

is delivered through a buffered mechanism. In classic gel sys-
tems, Pi is freely available; our system effectively buffers the 
delivery of Pi by employing aluminum oxide (Al2O3) surface 
chemistry, as occurs in natural soil (Elliott et al., 1983; Elliott, 
1989; Lynch et al., 1990; Oh et al., 2016).

Concerns over the dynamics of solution culture versus soil 
for plant growth have been raised previously (Mackay and 
Barber, 1984). Hundreds of studies have used gel systems to 
study Pi responses in Arabidopsis, with new results on indi-
vidual genes, pathways, and interactions with other nutrients 
reported regularly. Initial work describing the effects of Pi 
stress on the Arabidopsis root system indicated that Pi stress 
results in a shorter primary root with increased lateral root 
branching (Williamson et  al., 2001). Subsequent research 
demonstrated that auxin controls this determinate pheno-
type of the primary root (López-Bucio et  al., 2002; Nacry 
et al., 2005; Sánchez-Calderón et al., 2005). Some of the most 
recent papers published on Pi stress further explore this re-
sponse and have identified mutants that lack a short-root 
phenotype (Karthikeyan et al., 2014), showed how the Pi re-
sponse is related to other nutrient stresses (Kellermeier et al., 
2014), and identified large gene networks involved in the Pi 
response (Karthikeyan et al., 2014; Kellermeier et al., 2014; 
Salazar-Henao and Schmidt, 2016; Sun et al., 2016; Mora-
Macías et al., 2017). Recent reviews discuss the roles of indi-
vidual genes and suggest that further studies of these genes 
will help with improving crop Pi acquisition (Bouain et al., 
2016; Gu et al., 2016; Heuer et al., 2017).

Unlike what is commonly reported in Arabidopsis, low-
Pi conditions do not favor prolific lateral root branching in 
maize, common bean, or rice, but instead result in increased 
axial root elongation compared with lateral root elongation 
(Borch et  al., 1999; Mollier and Pellerin, 1999; Vejchasarn 
et al., 2016). In typical low-P soils, plants must increase soil, 
especially topsoil, exploration (Lynch, 2011). A  branching 
pattern that favors increased soil exploration rather than root 
proliferation into soil domains where P is scarce is a more 
logical strategy. Increasing growth at minimal cost, by grow-
ing thinner roots, forming aerenchyma, or relying on meta-
bolically cheap root hairs for Pi uptake, are strategies that 
lead to increased soil exploration (Lynch, 2011). Soil-grown 
Arabidopsis plants have decreased total shoot and root bio-
mass and increased specific root length in low Pi, indicating 
that roots are increasing the soil volume explored, not invest-
ing energy in local growth (Nord and Lynch, 2008), and 
lateral root branching does not increase in relation to Pi de-
privation (Linkohr et  al., 2002). The arrest of the primary 
root in gel media is due to an overabundance of available iron 
(Fe) in low-Pi media (Ward et al., 2008; Bournier et al., 2013), 
and is not solely due to Pi limitation. This phenotype may 
have arisen due to the gel growth system that eliminates soil 
chemistry and has minimal buffering capacity.

Here, we describe a system to buffer P delivery in a gel-
based Arabidopsis growth system. To mimic soil P dynamics 
more closely, Pi was bound to activated Al2O3 particles 
(Lynch et  al., 1990; Gourley et  al., 1993). This system has 
been used in greenhouse and horticultural studies (Borch 
et al., 1998; Brown et al., 1999; Tanaka et al., 2006; Vejchasarn 
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et al., 2016), but, until now, has not been adapted for plant 
growth in gel-based media. In this system, Al2O3 particles are 
adsorbed with Pi, resulting in a solid-phase buffered P system 
that supplies realistic low P regimes to the plant (Lynch et al., 
1990; Borch et  al., 1999; Oh et  al., 2016). An equilibrium 
concentration of Pi is maintained in solution, allowing for 
a diffusion-limited Pi supply, similar to soil (Elliott, 1989; 
Lynch et al., 1990). The non-soluble Al2O3 particles do not 
expose the plants to available aluminum (Lynch et al., 1990). 
Buffered P delivery results in smaller plants with reduced 
lateral root branching density, long root hairs, and altered 
expression of canonical Pi stress response genes when com-
pared with plants grown on media with a low concentration 
of unbuffered P.  The buffered, aluminum–Pi (Al-P) system 
allows for consistent, controlled Pi regimes for the plants. In 
traditional unbuffered gel systems, plant Pi uptake can lead 
to depletion of media Pi that results in plant Pi starvation, 
not deprivation. Our system results in root growth responses 
that are similar to those of low-Pi soil-grown plants. Here, we 
show that a solid-phase buffered P system for traditional, gel-
based Arabidopsis growth results in a realistic and sustained 
P stress throughout plant growth.

Materials and methods

Buffered phosphorus preparation
Compalox raw alumina (AN/V-801; Albemarle/Martenswerk, 
Germany) was charged with P at various concentrations follow-
ing a modified protocol based on earlier work (Lynch et al., 1990). 
Briefly, the alumina was sieved to a size from 400 µm to 650 µm in 
diameter, rinsed with Millipore-filtered water for 15 min, acidified 
by adding 0.0406 N HCl, and shaken for another 15 min. The alu-
mina was rinsed with water until the pH of the rinse reached 4.3 and 
was then loaded with an appropriate concentration of P in the form 
of KH2PO4 in 0.01 N NaCl by shaking for 2 h; for low-Pi alumina, 
a concentration of 80 mM KH2PO4 was used, and for medium-Pi 
alumina, a concentration of 400 mM KH2PO4 was used. Three add-
itional rinses with Millipore-filtered water were completed before 
the loaded alumina was dried and analyzed for Pi desorption using 
the methods of Murphy and Riley (1962).

Growth media preparation
Media were prepared using modified half-strength Epstein solu-
tion with adjustments to micronutrients to balance any effects of 
the application of the alumina particles (see Supplementary Fig. S1 
at JXB online). Media were adjusted to a pH of 5.7 and solidified 
using 0.8% agar (PhytoTechnology Laboratories, Shawnee Mission, 
KS, USA). Media for both unbuffered and buffered P delivery con-
tained 3 mM KNO3, 2 mM Ca(NO3)2·4H2O, 0.5 mM MgSO4·7H2O, 
49.95 µM KCl, 2 µM MnSO2·2H2O, 0.5 µM CuSO4·5H2O, and 50 µM 
Fe-NaDTPA (Dissolvine, D-FE-11, AkzoNobel, Amsterdam, The 
Netherlands). Pi concentrations were chosen to represent a range of 
Pi used to study Pi responses. Unbuffered high-Pi media contained 
1 mM NH4H2PO4, unbuffered medium Pi, 50 µM NH4H2PO4, and 
unbuffered low Pi contained no additional NH4H2PO4. Ions were 
balanced by the addition of 0.475  mM (NH4)2SO4 to unbuffered 
medium-Pi solution and 0.5 mM (NH4)2SO4 to unbuffered low-Pi 
solution and all buffered solutions.

Micronutrients in unbuffered media consisted of 25 µM H3BO3, 
2  µM Zn-Na2EDTA, and 0.5  µM (NH4)6Mo7O24·4H2O. In buff-
ered media, these three micronutrients were adjusted to account 
for differences due to the addition of alumina to 48.25 µM H3BO3, 

8.9 µM Zn-Na2EDTA, and 1.26 µM (NH4)6Mo7O24·4H2O as pre-
viously indicated (Gourley et  al., 1993). These adjustments were 
sufficient to overcome interactions between the aluminum particles 
and these nutrients as determined by plant elemental content [boron 
(B) and zinc (Zn)] or nitrate reductase activity [molybdenum (Mo)] 
(Supplementary Fig. S1). For low-iron experiments, the Fe-NaDTPA 
concentration was reduced to 2.5 µM. All media were supplemented 
with 0.125 µM MES, 0.025 µM myo-inositol, and 1% (w/v) sucrose.

Alumina particles were added to buffered media following sep-
arate autoclaving of the two entities. Particles were placed in folded 
filter paper and sealed prior to autoclaving. Particles (1%, w/v) were 
evenly distributed directly from the filter paper packet over the top 
of the media once they had solidified in the plates.

For soil-grown plant experiments, plants were grown in one of 
three mixtures: 100% low-P [3 µM available P (Olsen et al., 1954)] 
field soil [Hagerstown-Opequon, fine clayey, mixed, mesic (Typic 
Hapludalf), autoclaved 6 months before use], sand:vermiculite:low-
P buffered alumina [60:39:1 (v/v/v)], or sand:vermiculite:field soil 
[48:32:28 (v/v/v)]. Plants were fertilized with either high- or low-P 
half-strength Epstein nutrient solution.

Plant growth
Seeds (Arabidopsis thaliana Col-0) were sterilized in 10% bleach for 
5 min and rinsed a minimum of four times with sterile water. Seeds 
were plated, stratified at 4 °C for 2 d, and moved to 22 °C growth 
chambers with a long-day (16 h) light cycle and light levels from 
105 µmol m–2 s–1 to 120 µmol m–2 s–1. Plates were placed vertically 
to ensure growth along the surface of the agar and exposure to the 
aluminum particles.

For soil-grown plants, seeds were imbibed in water for 48  h at 
4  °C. Seeds were then planted on top of the media and grown in 
6.35  cm pots in the same growth chamber as the plates to ensure 
similar conditions. Plants were harvested after 12 d.

Data collection and analysis
Plates were scanned using a conventional flatbed scanner with 
a resolution of 300 dpi 3, 6, 9, and 12 d after germination. Root 
architecture analysis was completed using the semi-automated tra-
cing program, RootNav (Pound et  al., 2013), and measurements 
were extracted and analyzed using R (http://www.R-project.org). 
For plant weights, five plants from each plate were pooled into a 
single group.

Images for measurements of root hair length and density were 
obtained at 30× magnification on a dissecting microscope equipped 
with a CCD camera (SMZ-U and NIKON DS-Fi1, Nikon, Tokyo, 
Japan). Images were taken of the primary root 1 cm from the root 
tip. Root hair density was measured by counting along the root edge. 
The lengths of 10 root hairs were measured per plant using ImageJ 
software (National Institute of Mental Health, Bethesda, MD, 
USA) and data analyzed in R.

Images for epidermal cell length were obtained by first staining 
roots with 0.05% toluidine blue and then taking images at 80× mag-
nification on a dissecting microscope equipped with a CCD camera 
(SMZ-U and NIKON DS-Fi1). Five trichoblasts and five atricho-
blasts were measured on each root sample 1 cm from the primary 
root tip.

Cortical cell counts were obtained from sections sampled 1–2 cm 
from the root tip and imaged on a Nikon Diaphot inverted micro-
scope equipped with a CCD camera (SMZ-U and NIKON DS-Fi1) 
using a 10× objective. Primary root segments 3  cm in length 
(tip included) were embedded in a 3% agar (PhytoTechnology 
Laboratories) solution to aid with hand sectioning. Sections were 
briefly stained with 0.05% toluidine blue prior to imaging. Images 
were analyzed in ImageJ with the ObjectJ (https://sils.fnwi.uva.nl/
bcb/objectj/index.html) plugin.

Total plant and gel P concentrations were analyzed using the 
methods of Murphy and Riley (1962). For buffered treatments, 
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Al2O3 particles were manually removed prior to gel drying and ash-
ing. Other nutrient contents were determined either via ICP-OES 
(inductively coupled plasma optical emission spectrometry) for gel 
or ICP-MS for plant tissue. Gel nutrient analysis was completed fol-
lowing drying (60 °C for 4 d), ashing (243 °C for 8 h), and digestion 
in 0.1 N HCl. Digests were analyzed on an Agilent 730-ES, axial 
torch orientation (Agilent Technologies, Santa Clara, CA, USA) 
following EPA method 6010. Plant nutrient analysis was completed 
following drying (60 °C for 4 d) and digestion in concentrated, ultra-
pure nitric acid (HNO3) for 8 h at 80 °C in teflon vessels. The solu-
tion was diluted to obtain a final HNO3 of 0.45 N. Samples were run 
on a Thermo Fisher Scientific XSeries 2 both with and without col-
lision cell technology as required (srm 1640a, NIST 1547 as stand-
ard). Nitrate reductase activity was determined following published 
methods (Cheeseman and Tankou, 2005). Protein concentration was 
determined via a Bradford assay (B6916 Sigma-Aldrich) using BSA 
as a standard.

Statistical significance was determined using either a one- or two-
way ANOVA, with Tukey’s honest significant difference (HSD) tests 
via the ghlt command in the multcomp package in R.  Data were 
transformed prior to analysis as necessary using either a natural log 
or box-cox transformation. For all growth experiments, a minimum 
of 20 plants were analyzed per treatment, and all experiments were 
repeated at least three times.

RNA extraction, cDNA synthesis, and quantitative real-time PCR
Roots from five Arabidopsis plants from the same plate were 
pooled to one tube and treated as one biological replicate for 
the gene expression studies. Four plates were harvested, and this 
was repeated three times for the analysis of  each gene. RNA was 
extracted from the harvested tissues with 1  ml of  TriZol (Life 
Technologies, USA) using the manufacturer’s protocol. Genomic 
DNA contamination was removed from the extracted RNA with 2 
U of DNase II (New England Biolabs, USA) for 1 h at 37 °C. The 
DNase was heat inactivated at 65 °C for 10 min and the RNA was 
quantified with Nanodrop (Thermofisher Scientific, USA). A total 
of  500 ng of  RNA was reverse transcribed with a cDNA kit (Life 
Biotechnologies, USA) using 2.5 mM oligo(dT) to make cDNA of 
only the mRNA. The cDNA was diluted 10 times and quantita-
tive real-time PCR was performed in a 7500 Fast Real Time PCR 
(Applied Biosystems, USA) with SYBR green as the reporter dye 
(Roche, USA). Actin7 was used as an internal control to calculate 
the relative abundance of  gene expression using the ΔΔCt method 
(Livak and Schmittgen, 2001). Primer sequences of  the genes 

for which the relative abundances were measured are included in 
Supplementary Table S1.

Results

Buffered delivery of phosphorus provides a consistent, 
precise level of Pi to plants

Concentrations of Pi in the gel of buffered plates (soluble Pi) 
were 30 µM (medium) and 8 µM (low) throughout the whole 
plate and stayed nearly constant, decreasing by 16% in low-Pi 
media and 9% in medium-Pi media, throughout the 12 d dur-
ation of the experiment (Fig. 1B, filled circles). Unbuffered 
plates, on the other hand, had initial Pi concentrations of 
900  µM (high), 50  µM (medium), and 6  µM (low), which 
depleted by 32, 23, and 25% over time, respectively (Fig. 1).

Plants grown with buffered phosphate require much 
lower Pi concentrations for sufficient growth

Plants had different growth rates under different Pi condi-
tions, as shown by measuring the pooled fresh weight of five 
plants grown together on a single plate (Fig. 2A). By 9 days 
after germination (DAG), treatment had a highly significant 
(F=42.075, P<0.001) effect on plant fresh weight. Plants 
grown under high, unbuffered Pi (HU) and plants grown 
under medium, buffered Pi (MB) conditions were signifi-
cantly larger than all others, a difference that was magnified 
by 12 DAG. Low, buffered Pi (LB) plants were similar in 
weight to those grown under medium, unbuffered Pi (MU) 
conditions, but those grown under LU conditions were sig-
nificantly smaller (F=41.254, P<0.05).

Plants grown under HU conditions had the greatest Pi 
concentration throughout the duration of the experiment 
(P<0.001 at 12 DAG) (Fig.  2B). Plants grown under MB 
conditions had a steady Pi concentration over time, and had 
a significantly greater Pi concentration than plants grown 
under MU conditions and those grown under either LB or 
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LU. Plants grown under LB and LU had Pi concentrations 
that were significantly less than all other groups, though these 
two groups were statistically indistinguishable at 12 DAG 
(Fig. 2B). Pi concentrations in LB and LU plants were sig-
nificantly less at 12 DAG compared with 3 DAG (F=3.2725, 
P<0.05 and F=18.45, P<0.05 for buffered and unbuffered, 
respectively). Plants grown under LU conditions displayed 
the greatest decrease in Pi concentration over time.

Plants grown under P stress tend to allocate more resources 
to root growth in order to increase foraging and nutrient 
acquisition (Hawkesford et al., 2012). We assessed this by cal-
culating the root to shoot ratio at 12 DAG (Fig. 2C). Plants 
grown with an LB Pi supply were the only ones to show an 
increase in root to shoot ratio. Plants grown with an MB Pi 
supply had the lowest root to shoot ratio, indicating the most 
efficient growth. In contrast, plants grown with unbuffered Pi 
show no significant differences in their root to shoot ratios, 

regardless of the Pi concentration. At 9 DAG, plants grown 
on LB and LU media had similar fresh weights and Pi con-
centrations; however, plants grown on LB media amassed a 
greater total biomass at 12 DAG and shifted a substantial 
portion of their overall biomass to root growth rather than 
shoot growth.

Root architecture is altered by Pi supply

In the MU treatment, primary root length was signifi-
cantly decreased, and root branching increased, especially 
when considered as root branching density, since the pri-
mary root axis was much shorter (Fig. 3). Buffered plants, 
both MB and LB, had greater total root length and greater 
primary root length than their unbuffered counterparts 
(Fig.  3). Plants grown on LB media invested more energy 
into increasing axial growth and decreasing branching, 
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a markedly different phenotype from that manifested by 
plants grown on unbuffered media.

Since plants grown on gel media are often used as a model 
system to simulate plant growth and behavior in soil, we 
grew Arabidopsis plants in soil to compare root architec-
ture in Pi-limiting soil conditions with that observed on agar 
plates. Plants were grown in each of three media mixes: (i) 
low-Pi field soil; (ii) sand:vermiculite:low-Pi buffered alumina 
[60:39:1 (v/v/v)]; or (iii) sand:vermiculite:field soil [55:35:10 
(v/v/v)]. Root system architecture in these media was more 
variable than that of gel media-grown plants, probably due 
to the much more heterogeneous environment of soil as com-
pared with a gel plate system (Fig.  4). Plants were smaller 
in soil at 12 DAG, resembling the size of plate-grown plants 
at 9 DAG. An increase in lateral root branching analogous 
to that seen in the MU plates was not seen in any of the 

soil-grown plants. Under low-Pi conditions, all plants were 
smaller, with shorter primary roots, less lateral root length, 
and less total root length (Fig. 4). Lateral root branching den-
sity was either significantly less under low Pi conditions or 
was not impacted. In these conditions, where P is buffered by 
soil or alumina, root growth is similar to that in the buffered 
gel growth system.

Root hairs respond to low Pi differently in buffered and 
unbuffered systems

Plants are known to increase the length and density of their 
root hairs under Pi-limiting conditions. Root hairs of plants 
grown on LB media had increased root hair length and den-
sity as compared with those grown on MB media, but the 
increase was not as dramatic as the 4-fold increase seen in 
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MU compared with HU (Fig. 5). Root hairs of plants grown 
on unbuffered media were significantly denser as compared 
with their buffered counterparts.

We examined two factors that contribute to the increase 
in RHD: epidermal cell length and cortical cell number (Ma 
et  al., 2001). Plants grown on unbuffered media had sig-
nificantly more cortical cells with decreasing P concentra-
tion as compared with the consistent eight cells observed in 
HU plants (Fig. 5). Plants grown on buffered media had an 
average of 9.59 cells for plants grown on both MB and LB 
media, with counts ranging from 8 to 14 cortical cells per 
root. Treatments that resulted in increased RHD also had 
decreased epidermal cell length, and epidermal cell length dif-
fered between trichoblasts and atrichoblasts as expected. The 
ratio of atrichoblast to trichoblast length ranged from 1.44 

for plants grown on LU media to 1.62 for plants grown on 
HU media, but there were no significant differences among 
treatments (not shown).

Gene expression of common Pi stress genes differs in 
buffered and unbuffered Pi-grown plants

Though the expression of hundreds of genes is regulated by 
P stress (O’Rourke et al., 2013; Li and Lan, 2015; Sun et al., 
2016), certain genes have been used as markers in many dif-
ferent studies. We profiled the expression of some of these 
canonical genes at both 6 and 12 DAG (Fig. 6). At 6 DAG, 
plants were not yet displaying dramatic symptoms of P stress. 
At this time, AT4, a non-coding transcript whose expression is 
strongly induced in roots under low P (Shin et al., 2006), was 
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already differentially expressed among treatments; LB plants 
had the highest relative expression and HU plants the lowest. 
By 12 DAG, the expression was more uniform across treat-
ments, and only HU plants had significantly lower expression 
levels than other treatments. The inorganic Pi transporter 1;4 
(PHT1;4), which is known to be up-regulated in roots under 
Pi starvation (Shin et al., 2004), shows increased expression 
in LB-grown plants at 9 DAG, indicating that LB plants are 
experiencing an earlier stress than their unbuffered counter-
parts. The expression of PHT1;4 is Pi concentration depend-
ent in both buffered and unbuffered systems at 12 DAG.

Expression profiles of three additional genes, phospho-
lipase D zeta-2 (PLDζ2), ribonuclease 1 (RNS1), and SPX1, 
further indicate the importance of timing in defining the low-
Pi response. RNS1 expression increases rapidly in all plants 
grown on low-Pi media. A  delayed increase in expression 
occurs in MU plants, while MB plants have a consistent, 
slightly increased expression. SPX1, encoding a nuclear pro-
tein that has increased expression under Pi stress and is known 
to interact with PHOSPHATE STARVATION REPONSE1 
(PHR1) (Puga et al., 2014), has a similar expression profile to 
RNS1. At 12 DAG, MU plants have a slightly higher expres-
sion of SPX1 than their buffered counterparts. Expression of 
all of these genes is lowest in HU plants.

Iron interacts with Pi to shape the phenotype

The low-Pi phenotype of Arabidopsis is known to be partially 
shaped by the presence of excess available Fe in the growth 
medium (Ward et  al., 2008). To examine the role of Fe in 
buffered media, we grew plants on media containing 2.5 µM 
Fe (as Fe-DTPA), versus 50 µM Fe in all other media in this 
study. Reducing the Fe concentration of the media affected 
the phenotype in all treatments, as expected since Fe is a 
known growth regulator (Broadley et al., 2012). Decreased Fe 
concentration resulted in significantly longer primary roots 
under MU and LB conditions (Fig. 7). Under LU conditions, 
the primary root was significantly shorter, and the plants had 
increased branching. Under LU, low-Fe conditions, root hair 

length increased significantly, a known growth response to 
low Fe (Schmidt et al., 2000). Root hair density decreased in 
MU-grown plants, probably due to the improved growth of 
the primary root.

To explore these nutrient interactions further, we ana-
lyzed the expression of  three genes related to Fe and P, 
IRT1, FER1, and FRO2, while also measuring plant Fe 
content (Fig. 7). Previous work has shown that FER1 ex-
pression increases under low-Pi conditions, whereas IRT1 
and FER1 have decreased expression under Pi stress (Ward 
et al., 2008; Bournier et al., 2013; Rai et al., 2015). FER1 
expression did not differ among treatments at 6 DAG, and 
at 12 DAG only MB plants had significantly lower expres-
sion than LU plants. FRO2 expression was significantly 
lower under MU and LU conditions at 6 DAG. At 12 DAG, 
MB plants had significantly higher expression of  FRO2 as 
compared with all unbuffered treatments. Expression of 
IRT1 was significantly lower in MU and LU conditions 
compared with HU, MB, and LB conditions at 6 and 12 
DAG. Plant Fe concentration measurements show that, 
unlike their buffered counterparts, MB- and LB-grown 
plants did not overaccumulate Fe.

Discussion

P is often limiting to plant growth and crop productivity, 
but most of our understanding of the molecular responses 
to P stress is drawn from the highly artificial Arabidopsis 
gel media growth system. Here, we present a modification to 
the gel-based system that is simple, reproducible, and allows 
for direct observation of plant growth. By adsorbing Pi on 
commercially available Al2O3 particles, we are able to deliver 
buffered Pi regimes to Arabidopsis that mimic P regimes in 
natural soil. By making slight modifications to the widely 
used plate-based system, we maintain the advantages of a 
plate-based system while providing plants with realistic Pi 
regimes. We also limit the complications that arise due to 
nutrient toxicities when Pi is eliminated.

Fig. 6.  Relative expression of five canonical Pi stress response genes in roots of plants grown on different media. Expression was measured at both 
6 DAG (top row) and 12 DAG (bottom row) DAG. Bars represent averages of three different replicates, with 20 plants per replicate. Letters indicate 
significance determined by Tukey’s HSD (P<0.05) for each gene and each day.
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In soil, P is exchanged between soil particles and the solu-
ble fraction in equilibrium reactions (Holford, 1997; Shen 
et al., 2011). Plant growth and P assimilation remove P from 
the soluble fraction where P flows via diffusion, leading to 
the release of Pi from bound pools into the soluble pool to 
maintain equilibrium. The dynamic nature of this equilibrium 
allows plants to accumulate much higher concentrations of 
P than what is available in the soil at any one point in time 
(Holford, 1997; Raghothama, 1999; Heuer et al., 2017). This 
is in contrast to the classic gel system in which freely available 
Pi is present in millimolar concentrations, far exceeding the 
concentrations in fertile soil. Plants grown with this unreal-
istic level of Pi are used as the controls with which all other 
treatments are compared. We have shown that plants grown 
with a much lower concentration of Pi (medium buffered, 

MB) that is delivered in buffered form grow just as well as 
those under traditional, unbuffered, high-Pi (HU), conditions. 
Plants grown under sufficient, buffered Pi conditions have dif-
ferent levels of expression of canonical Pi stress genes, includ-
ing AT4, PHT1;4, RNS1, and SPX1, than plants grown under 
high-Pi, unbuffered conditions. Since the high-Pi, unbuffered 
condition is highly artificial, many genes previously identified 
as Pi responsive may not be responsive to differences in Pi lev-
els under buffered conditions. Here, we have shown that AT4, 
a gene commonly used as an indicator of Pi stress (Shin et al., 
2006), has greater expression under sufficient, buffered Pi con-
ditions as compared with high, unbuffered conditions (Fig. 6), 
despite the fact that plants grown under sufficient levels of 
buffered Pi are not experiencing obvious Pi stress. Three other 
genes, PHT1;4, RNS1, and SPX1, that play roles in uptake 
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of Pi (Shin et al., 2004), sensing and responding to Pi stress 
(Bariola et  al., 1994), and early Pi-deficient signaling (Puga 
et  al., 2014), respectively, also show significant expression 
differences between high, unbuffered and medium, buffered 
treatments at either 6 DAG (RNS1 and SPX1) or 12 DAG 
(all three genes). Of the genes we analyzed for expression, 
only PLDζ2, which plays a role in remobilizing phosphate 
from internal pools (Cruz-Ramírez et al., 2006), did not differ 
between HU and MB plants, though expression was signifi-
cantly greater in buffered and unbuffered low-Pi conditions at 
6 and 12 DAG, and in medium, unbuffered conditions at 12 
DAG, indicating that it is Pi stress responsive. All the genes 
we analyzed showed some degree of Pi deficiency response, 
but the magnitude and timing of this response differed under 
buffered versus unbuffered conditions. Two previous stud-
ies have profiled expression of P stress-related genes in soil-
grown plants, both examining proton-coupled Pi transporters. 
Though increases in expression were found under Pi stress, 
they were not profiled in a time-dependent manner, probably 
due to the difficulty of retrieving roots from soil (Mudge et al., 
2002; Rausch et al., 2004). We recommend that the expression 
and function of many of the genes thought to be involved in 
the Pi stress response be re-examined under buffered condi-
tions, which would be easier to work with than soil. This will 
not only further our understanding of the Arabidopsis Pi defi-
ciency response, but will also strengthen the possibility of dis-
covering conserved responses that could have impacts in crops 
and soil-grown plants.

The classic gel media system has come under scrutiny previ-
ously, as have similar hydroponic methods. The gelling agents 
used (Jain et al., 2009; Gruber et al., 2013), pH of the media 
(Svistoonoff et al., 2007), exposure of roots to light (Xu et al., 
2013; Rellán-Álvarez et al., 2015), and nutrient composition 
(Strieder et  al., 2017) have all been shown to affect plant 
responses to nutrient stress. The complex interactions between 
micro- and macronutrients in media have been described 
(Misson et al., 2005; Gruber et al., 2013; Kellermeier et al., 
2014). Recently, Strieder et  al. (2017) grew plants on modi-
fied, Pi-limited Somerville and Ogren (SO) and half-strength 
Murashige and Skoog (MS) media and found that the phos-
phate deficiency response9 (pdr9) mutant of Arabidopsis is not 
actually a Pi-sensitive mutant as previously reported (Chen 
et al., 2000), but rather is hypersensitive to ammonium and 
Fe. Though using alternative media may eliminate certain 
confounding nutrient conditions, the Pi is still unbuffered. 
Rescreening of mutant lines that have been identified as Pi 
sensitive or tolerant to low Pi should be done using a buffered 
Pi system, rather than any media where the Pi is not buffered. 
Doing so will probably yield results that may require reconsid-
eration of the nature of P stress responses in Arabidopsis and 
what genes and pathways shape this behavior.

Genes involved in the maintenance or control of primary 
root elongation under low-Pi conditions have been identified 
by examining the elongation of mutants under various Pi 
conditions (Chen et al., 2000; Sánchez-Calderón et al., 2006; 
Svistoonoff et  al., 2007; Ticconi et  al., 2009; Wang et  al., 
2010a; Strieder et al., 2017). Here, we show that although pri-
mary root length decreased under low, buffered conditions, 

the decrease was not as drastic as what is observed under 
unbuffered conditions. When grown with buffered Pi, plants 
decreased their branching density under low Pi conditions 
as compared with sufficient (medium) Pi conditions, in con-
trast to the response observed in unbuffered, medium versus 
unbuffered, high-Pi-grown plants (Fig.  3). Since the root 
architecture of plants grown on gel with a buffered Pi supply 
more closely resembles that of plants recovered from a soil or 
sand culture system (Fig. 4), investigations of genetic com-
ponents playing a role in more realistic Pi stress responses 
are more likely to have implications for plants grown in agri-
cultural conditions. The reduction in branching and pro-
motion of axial growth observed in buffered Pi is similar to 
what has been observed in maize, common bean, and rice 
in greenhouse and field studies (Borch et al., 1999; Mollier 
and Pellerin, 1999; Vejchasarn et al., 2016). As described in 
many other species (Gahoonia and Nielsen, 1997; Zhu et al., 
2010; Miguel et al., 2015; Wang et al., 2016; Vejchasarn et al., 
2016), root hair length and density increase under low-Pi 
conditions in Arabidopsis under both buffered and unbuff-
ered growth conditions. Previously, we had shown that the in-
crease in RHD under Pi-limiting conditions was partially due 
to an increase in cortical cell number, and thus in the number 
of trichoblast files forming root hairs (Ma et al., 2001). Here 
we show that under conditions where Pi is delivered through 
a buffered regime, cortical cell number does not increase. The 
increase in RHD is instead due to a decrease in epidermal cell 
length, resulting in more cells per area measured.

The response of Arabidopsis to low P is known to affect 
micronutrient nutrition, including copper (Cu) and Zn 
(Misson et al., 2005; Perea-García et al., 2013; Khan et al., 
2014; Briat et  al., 2015), and, most notably, Fe. The com-
monly described phenotypic response to low Pi that results in 
the arrest of the primary root can, in many cases, be ascribed 
to excess Fe availability in the absence of P (Schmidt and 
Schikora, 2001; Ward et al., 2008; Lan et al., 2012; Bournier 
et al., 2013; Li and Lan, 2015; Sun et al., 2016). Recent work 
claims that 579 genes are co-regulated by P and Fe (Li and 
Lan, 2015), but these experiments were conducted using 
a traditional, unbuffered system; therefore, many of these 
genes may not actually be Pi responsive under buffered Pi 
conditions. Our system eliminates confounding Fe–Pi issues, 
since our plants experiencing Pi stress are not overaccumu-
lating Fe, nor do they respond to Fe stress at the transcrip-
tional level at low-Pi conditions. Adding Al2O3 particles to 
the media can also alter other nutrients, including B, Mo, and 
Zn. To address this, we adjusted the concentrations of these 
elements in our nutrient solution. These adjustments lead to 
similar availability (B) or plant accumulation (Zn) of these 
nutrients (Supplementary Fig. S1). Mo concentrations in 
plant tissue differed between buffered and unbuffered treat-
ments; however, the activity of nitrate reductase, for which 
Mo is required, did not differ between treatments, indicating 
that these differences were unlikely to be functionally rele-
vant. The buffered delivery of Pi not only creates realistic P 
regimes, but also eliminates known problems that arise when 
P is eliminated from nutrient solutions. The use of buffered 
Pi regimes should not be restricted to studies focusing on 
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Pi nutrition. Salinity stress has long been known to interact 
with Pi stress, for example in soybean (Grattan and Maas, 
1984; Phang et al., 2009) and barley (Talbi Zribi et al., 2011). 
Recently, salinity and Pi stress have been shown to interact 
to shape root system architecture in a diverse collection of 
Arabidopsis ecotypes (Kawa et  al., 2016). It is unknown 
whether any of the identified responses are due to the artifici-
ality of Pi regimes or are responses that would be observed if  
plants were grown in a buffered Pi or soil system.

The standard growth method for Arabidopsis has allowed 
for rapid, uniform growth that has led to countless conclu-
sions in plant biology. The simplification of the medium has 
led to the elimination of diffusion limitation caused by soil 
chemistry, resulting in responses that may not be relevant to 
those of plants grown in soil. In addition to complications 
from excess Fe, plants grown in gel without buffered P may 
be responding to the perceived decline in P availability, com-
plicating interpretation of responses. Our buffered system 
more closely mimics soil and results in a more realistic and 
logical growth phenotype. Phosphate adsorbed onto Al2O3 
particles (Al-P) can easily be made in any lab using standard 
equipment in <1 d. By continuing to use a gel-based system, 
advanced imaging, including confocal microscopy and kine-
matics, can still be conducted without the need for expensive 
systems such as MRI or CT scanning. We recommend that all 
studies of mineral nutrition in a gel system, especially those 
pertaining to Pi nutrition, adopt this buffered system for fu-
ture studies.

Supplementary data

Supplementary data are available at JXB online.
Fig. S1. Micronutrient availability in gel and plant micro-

nutrient content.
Table S1. Primers used in this study for qRT-PCR.
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