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ABSTRACT The genetic improvement of economically important production traits of dry bean (Phaseolus
vulgaris L.), for geographic regions where production is threatened by drought and high temperature stress, is
challenging because of the complex genetic nature of these traits. Large scale SNP data sets for the two major
gene pools of bean, Andean andMiddle American, were developed by mapping multiple pools of genotype-by-
sequencing reads and identifying over 200k SNPs for each gene pool against the most recent assembly of the
P. vulgaris genome sequence. Moderately sized Bean Abiotic Stress Evaluation (BASE) panels, consisting of
genotypes appropriate for production in Central America and Africa, were assembled. Phylogenetic analyses
demonstrated the BASE populations represented broad genetic diversity for the appropriate races within the two
gene pools. Joint mixed linear model genome-wide association studies with data from multiple locations dis-
covered genetic factors associated with four production traits in both heat and drought stress environments using
the BASE panels. Pleiotropic genetic factors were discovered using a multi-trait mixed model analysis. SNPs
within or near candidate genes associated with hormone signaling, epigenetic regulation, and ROS detoxification
under stress conditions were identified and can be used as genetic markers in dry bean breeding programs.
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Common bean (Phaseolus vulgaris L.) is the most important and af-
fordable food legume for over 80million poor people in regions of Latin

America, the Caribbean, and Eastern and Southern Africa. Major con-
sumers of common bean in these countries often live on less than two
U.S. dollars per day, where beans are grown primarily by smallholder
farmers on less than two hectares (McClean and Raatz 2017). Bean
productivity on these farms is reduced by high ambient temperatures
and drought that affect development and reproduction (Buruchara
et al. 2011). In East Africa, 70% of bean production is threated annually
by drought and high night-time temperatures. Therefore, there is a real
need to improve common bean productivity in these regions for fast
growing populations that will be affected by anticipating future condi-
tions brought on by climate change (Beebe et al. 2011). Improvement
efforts are best supported by genetic analyses of important produc-
tion traits since stable genetic changes have a longer lasting effect on
productivity (Mukankusi et al. 2018). Recent advancements such
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as a reference bean genome sequence (Schmutz et al. 2014), geno-
type-by-sequencing methods (GBS; Schröder et al. 2016), GWAS
(Moghaddam et al. 2016), and available database resources (http://
phaseolusgenes.bioinformatics.ucdavis.edu/) are enabling the dis-
covery of genetic factors associated with the abiotic stress response.
The first dense genotyping tool was the 6k Illumina Infinium
SNP assay (Song et al. 2015). This platform proved useful for
the discovery of many important agronomic traits primarily with
bi-parental mapping studies of common bean (Mukeshimana et al.
2014; Brisco et al. 2014; Bello et al. 2014). However, recent
GBS methods generated a much higher number of SNPs per pop-
ulation for fine-mapping genomic regions of interest (Moghaddam
et al. 2016).

A genetic discovery population carefully designed to include vari-
ation for response to heat and/or drought stress is important for
discovering critical genetic factors associated with the abiotic stress
response. Initial abiotic stress tolerance studies in common bean used
bi-parental populations (Blair et al. 2012; Mukeshimana et al. 2014;
Villordo-Pineda et al. 2015) and discovered several quantitative trait
loci (QTL) for each agronomic trait evaluated under drought and/or
heat stress. Bi-parental population studies are important to discover
rare alleles with large effects (Singh and Singh 2015). By contrast,
association panels can sample variation across a larger number of ge-
notypes and be used to discover both large or small effect genetic factors
that are associated with the plant’s response to abiotic stress conditions
(Risch 2000; Mamidi et al. 2011b; Moghaddam et al. 2016).

WildMiddleAmerican (MA) andAndean commonbeangenepools
evolved froman ancestral population�110,000 years ago (Mamidi et al.
2013), and independent domestication events occurred in the two wild
pools �7,000 years ago (Mamidi et al. 2011a). Repeated studies have
shown genetic diversity is greater among domesticated MA beans than
domesticated Andean beans (Velasquez and Gepts 1994; Mamidi et al.
2013; Schmutz et al. 2014). Each gene pool has specific agronomic,
morphological, physiological and molecular characteristics, and allele
frequencies differ between the two gene pools for genetic factors
controlling a trait (Singh et al. 1991; Schmutz et al. 2014; Lobaton
et al; 2018). When designing populations for global projects it
is important to consider the fact that beans produced in North
America, Central American, and parts of South America are typi-
cally members of the MA gene pool, while much of the bean pro-
duction in the remainder of the world focuses on Andean beans. For
example, a MA diversity panel (MDP; n�300) was developed for the
USDA funded BeanCAP project that consisted of germplasm grown
in the major US production regions from the 1930s to the 2000s
(Moghaddam et al. 2016). That population was used to identify
candidate genes for production (Moghaddam et al. 2016), nutri-
tional (Mafi Moghaddam et al. 2017; McClean et al. 2017), and
domestication traits such as increased leaf and seed size (Schmutz
et al. 2014). Recently, an Andean Diversity Panel (ADP; n�350) was
developed (Cichy et al. 2015a), and used to map traits associated
with for cooking time (Cichy et al. 2015b), disease resistance
(Zuiderveen et al. 2016, Tock et al. 2017), symbiotic nitrogen fixa-
tion (Kamfwa et al. 2015a), flooding tolerance (Soltani et al., 2018),
and agronomic traits such as phenology, aboveground biomass, and
seed yield (Kamfwa et al. 2015b). The USAID Climate Resilience
Bean project (CRIB; https://plantscience.psu.edu/research/labs/
roots/projects/usaid-crb) was initiated to understand the genetics
and physiological mechanisms of the response of dry beans under
abiotic stress environments. One component of the project was to
develop appropriate sized populations that can be managed by re-
search teams with limited resources yet large enough to discover

genetic factors of moderate to large effects. The CRIB project
designed new MA and Andean germplasm panels that are specifi-
cally adapted to the climate challenged regions of Central America
and Africa. Because of resource constraints for field research in
these target regions, the panels were designed to be modest in size
(n�120 lines). Here we report on the development of these moder-
ate-sized panels and the results obtained by combining SNP geno-
typing data of these panels with those of the MDP and ADP to
generate large SNP marker collections for each gene pool. This re-
port also describes the utility of those SNP collections and the new
association panels to map genetic factors controlling important pro-
duction related traits under heat and drought conditions. The utility
of multi-trait mixed model (MTMM) GWAS analysis (Korte et al.
2012) is demonstrated as a method to identify statistically robust
genetic factors in smaller-sized populations. Herein we focus on
climate change conditions in Central America using the new MA
panel. These populations and SNP data sets are now available to be
applied across a broader array of stresses and locations to discover
loci and markers that can be applied to other common bean crop
improvement efforts.

MATERIALS AND METHODS

Germplasm collection and evaluation panels
Several common bean breeding programs that are partners in this
project have been developing cultivars and lines for tolerance to a variety
of abiotic stresses.Aflexible systemfor the evaluationof these linesunder
different abiotic environments is designated here as the Bean Abiotic
Stress Evaluation (BASE) approach. Overall, a total of 155 genotypes
from the MA gene pool, 147 Andean genotypes, and 5 tepary bean
(Phaseolus acutifolius) genotypes form the BASE germplasm collection
were evaluated in three separate panels (Table S1). The BASE_120 panel
consists of 93 genotypes from the MA gene pool, 22 genotypes from
the Andean gene pool, and four tepary bean (Phaseolus acutifolius)
genotypes. The BASE_Meso panel consists of 119 genotypes primarily
from Race Mesoamerica within the Middle American gene pool. The
BASE_Andean panel contained 124 genotypes. The genotypes forming
these panels were obtained from breeding programs at CIAT, Colorado
State University, USA; Zamorano University, Honduras; USDA-ARS,
Prosser, Washington; USDA-ARS, Puerto Rico; and the University
of Puerto Rico. Whereas the BASE_120 and BASE_Meso consist
primarily of cultivars and advanced breeding lines, the BASE-Andean
contains a large portion of landraces from East Africa.

Single nucleotide polymorphism data sets
SNP reads frommultiple GBS libraries constructed using a two-enzyme
protocol [MseI and Taqa1; Schröder et al. (2016)] of were remapped,
and SNPs were called. Those libraries were constructed using geno-
types of the MDP, ADP, BASE_120, BASE_Meso, and BASE_Andean
populations. MA and Andean SNPs were derived from 482 and 325
genotypes, respectively.

The libraries were sequenced (read length = 230 nt) at the Hudso-
nAlpha Institute forBiotechnologyusingIlluminaHiSeq2500Sequenc-
ing System. Sequencing barcodes were removed and low-quality
sequences were trimmed. Only processed reads with a quality
score $ 20 and a minimum trimmed length of 180bp were used for
mapping. BWA-MEM (Li 2013), and Samtools (Li et al. 2009) were
used to align the data against reference genome Phaseolus vulgaris
v2.1, and to index, and sort the aligned reads (https://phytozome.jgi.
doe.gov/pz/portal.html#!info?alias=Org_Pvulgaris). The GATK Uni-
fied Genotyper v3.3 (McKenna et al. 2010) with the minimum
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confidence threshold of 30 was used to call SNPs. SNPs with ,50%
missing data were imputed using fastPHASE (Scheet and Stephens
2006).

Population structure and phylogenic tree analysis
Phylogenetic relatedness of the full set of 807 genotypes, from the panels
from which SNP reads were obtained, was investigated by calculating a
maximum likelihood (ML) phylogenic tree using the SNPhylo pipeline
(Lee et al. 2014) with a pairwise LD r2, 0.1 between consecutive SNPs,
and aMAF.0.05. This tree was developed with the 5,637 SNPs shared
between theMA and Andean SNP data sets. The tree was bootstrapped
with 1,000 iterations using MEGA7 (Kumar et al. 2016). In addition,
individual trees were constructed for the MA and Andean genotypes
separately using the individual population SNPs with the same criteria
used to evaluate the full set of genotypes. The shared SNP data set from
the phylogenetic analysis of all genotypes was used for a Bayesian
population structure analysis with the program STRUCTURE 2.3
(Pritchard et al. 2000). An admixture model of independent allele
frequencies with 20,000 burn-ins and 10,000 MCMC replication for
subpopulation sizes of K = 1 to 10 was implemented (McClean et al.
2012). TheDK statistic parameter (Evanno et al. 2005), which calculates
the total change in log probability of data between consecutive k values,
was used to determine the number of clusters. Final subpopulation
graphics were produced by theDistruct 1.1 program. (Rosenberg 2004).

Phenotypic analysis
Three BASE panels were evaluated in 2014-2016 at the University of
Puerto Rico Juana Diaz Experiment Station in Juana Diaz, Puerto Rico
(PR) and Nacaome, Honduras (HN). For Juana Diaz, the panels were
grown in separate drought and heat experiments, using a lattice design
with three replications in 2014, an RCBD design with three replications
in 2015, and an RCBD design with six replications under drought and
four replications under heat in 2016. All plots were three m in length
and row spacing was 0.76 m. The data from Nacaome, HN used a
randomized complete block design with three replications of the BASE
populations conducted under heat during the dry seasons of 2015 and
2016. The experimental lines were planted on raised 1.5 m wide beds
with two rows spaced 0.6 m apart. Row length was 2.5 m. Phenotypic
data collected included seed yield (kg ha-1), days to flowering (DTF)
recorded when 50% of the plants had at least one open blossom,
Macrophomina phaseolina disease severity scored from 1 to 9 (Abawi
et al. 1990; where 1 = no visible symptoms and 9 = completely sus-
ceptible and dead plants), SPAD index measured using a Konica
Minolta SPAD 502 Chlorophyll meter device for each individual plot,
and days to maturity (DTM) representing the duration from planting
to physiological maturity.

Genome-wide association studies
GWAS were performed for each trait in each location under different
stress conditions using untransformed data. For joint analyses of a
phenotype with data from multiple stresses or locations, the data were
transformed prior to the GWAS analysis to a standard scale using the
statistical Z-transform (the ratio of the deviation of the individual
phenotypic value from the populationmean to the population standard
deviationof theexperiment inwhich theobservationwascollected).This
transformation generates individual phenotypic data that is relative to
the overall performance of the population at a specific location under a
specific stress condition. In this way, we can pool the Z data across
locations or stresses to discover common factors affecting the trait. The
association between each quantitative trait and the genome-wide SNPs

was analyzedwith theGAPITRpackage (Lipka et al. 2012; RCoreTeam
2013) as described byMoghaddam et al. (2016). A general linear model
with fixed effect, and a univariate unified mixed linear model with
random effect, and both fixed and random effects were tested for
GWAS analysis for each trait. Principal component analysis (PCA)
was performed using the Prcom function in R, and relatedness was
measured using the EMMA algorithm implemented in GAPIT.
Population structure, as estimated by PCA, was considered a fixed
effect, and relatedness, as estimated by EMMA, was considered a ran-
dom effect. Structure was based on the number of PCAs that accounted
for 25–50% of the phenotypic variation. The best model was cho-
sen based on the lowest calculated MSD value (Mamidi et al. 2011b).
Manhattan and QQ plots were generated using SNPs with MAF .
0.05 using mhtplot function from R package gap (Zhao 2007). The
significance level was calculated using a Bonferonni test based on the
effective number of markers (n = 463) as determine by the simpleM
algorithm (Gao et al. 2008). The phenotypic variation explained by a
significant marker was described as a likelihood-ratio-based R2 (R2

LR;
Sun et al. 2010). This procedure considers the effects of population
structure and/or relatedness in the calculation. The analysis was per-
formed with the genABLE R package (Aulchenko et al. 2007) to esti-
mate the amount of variation explained by the most significant SNP
within a GWAS peak. The relationship between individual SNP genetic
effects between two correlated traits (pleiotropy) or environments (geno-
type-by-environment interaction) was investigated using a multi-trait
mixed model (MTMM) as described by Korte et al. (2012). Pearson
phenotypic, genetic, and environmental correlations and heritabilities
were estimated using the MTMM software (Korte et al. 2012). For all
GWAS analyses, the SNP with the lowest P-value was chosen to
represent that locus. Only SNPs with minor allele frequency $
0.05 were considered when defining significant loci or regions.

Candidate Gene Selection
Candidate genes were selectedwithin a650 kb interval of the peak SNP
within a GWAS peak region. The predicted functional effect of each
SNPwas obtained from a SNPeff database developed for all SNPs using
snpEFF.jar with “build-gff3” (Cingolani et al.2012). The snpEff data-
base was used to describe potential effects of SNPs within the 650kb
interval of a peak SNP.

Data availability
Table S1 contains the list of BASE genotype names. Table S2 contains a
summary of MLM GWAS results and reports the peaks for each trait
under various environmental conditions.

Table S3 contains SNP distribution across the euchromatic and
heterochromatic regions of all chromosomes in two gene pools. File S4
and S5 are text files containing un-imputed HapMap genetic data for
Andean and MA genotypes respectively. Supplemental material avail-
able at Figshare: https://doi.org/10.25387/g3.7965305.

RESULTS

SNP data set development
To maximize the number of SNPs for the haplotype maps, sequencing
reads from multiple GBS libraries consisting of individuals with either
MA or Andean parentage were pooled. These HapMaps were based on
381,092,199 GBS reads across 469MA genotypes and 280,085,901 GBS
reads across 325 Andean genotypes. These reads averaged 201bp and
were mapped against version 2.1 of the Phaseolus vulgaris reference
genome (phytozome.jgi.doe.gov). Individual MA and Andean hap-
lotype maps (HapMap) were developed after final SNP filtering and
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imputation. The MA HapMap contained 205,293SNPs, and the
Andean HapMap consisted of 260,670 SNPs. The range of SNPs
per Mb is consistent across both and heterochromatic of the and
Andean SNP data sets (Table S3). For the MA SNP collection, there
are 1.79x SNPs in the heterochromatic region compare to the euchro-
matic region, while that ratio for the Andean SNP collection is 1.51x.
The un-imputed HapMap data for each gene pool can be found in S4
and S5 text files. Given the large number of genotypes in each of the
two HapMaps, researchers can now design experiments to capture
phenotypic data from all or a subset of the genotypes in the HapMap
populations and then perform GWAS analyses with a very large SNP
dataset to discover important genetic factors controlling traits of in-
terest. The genotypes used to develop the HapMaps represent many
of genotypes used for production purposes over the last 50 years in the
USA and elsewhere. These HapMaps are a major output from the
USAID CRIB project and will be an important genetic resource well
beyond the end of the project.

Population structure and phylogenic analysis results
To develop a full characterization of the genotypes used to generate the
SNPdatasets, an initialML treewith807MAandAndeancommonbean
genotypes alongwith a few tepary bean genotypes, was constructedwith
5,637 common SNPs with LD , 0.1 (Figure 1). Two distinct clades
were observed that separated the MA and Andean genotypes. The
BASE_Meso and BASE_Andean are located within their correct gene
pools in the tree demonstrating they are appropriate genotypes to study
phenotypic responses in the two gene pools. The BASE_Meso geno-
types were not distributed across the full spectrum of MA genotypes,
rather they clustered in the tree with other known members of race
Mesoamerica. This was expected because beans grown in the target
Central American region are almost exclusively from raceMesoamerica
of the MA gene pool.

Out of the 102,878 SNPs shared by the two gene pools, a reduced set
of 1,882 SNPs with pairwise LD values less than 0.1 were chosen
for a Bayesian structure analysis with genotypes used for the BASE
populations. The optimumnumber of subpopulations was k = 2 (Figure
2A) and corresponds to the two BASE panels. The expected heterozy-
gosity between genotypes of the same cluster was 0.29 for BASE_Andean
and 0.24 or BASE_Meso. Therefore, the results from STRUCTURE
analysis confirmed the two BASE panels represent distinct populations
and are appropriate for studies designed to investigate the genetic
factors controlling important agronomic traits within each
gene pool. This SNP data set will allow researchers to determine
whether traits are controlled by genetic factors shared by both gene
pools or whether gene pool specific factors are controlling impor-
tant traits.

The 1,882 SNPs were also used to develop a bifurcated ML
phylogenic tree that demonstrated the two populations were clustered
into two separate clades (Figure 2B). The BASE_Meso clade branches
are more elongated than the shorter branches of the BASE_Andean
clade. This supports other observations that the diversity of the Meso-
american race is greater than that foundwithinAndean genotypes. Eight
Andean genotypes (green in Figure 2B), including G13654, G2377,
G23829, SAB_6292, SEQ_11, 754_3 and 379_PI_203934, were grouped
with BASE_Meso genotypes despite being selected as members of the
BASE_Andean panel. Tepary 22 fell in between the two clusters.

GWAS analyses
The populations developed for this project were deliberately of a smaller
size since not all project partners had the necessary resources tomanage
replicated field trials for large populations. Theory suggests that larger

population sizes can uncover either large or small effect size genetic
factors while smaller size populations tend to discover only effects of
larger size (Korte and Farlow 2013).With these considerations inmind,
the three panels of �120 individuals were phenotyped in replicated
trials in multiple abiotic stress conditions. This phenotype data were
then coupled with a robust SNP data set built with reads from a
much larger set of individuals from a diverse pool of genotypes that
represented the genetic diversity of the two bean gene pools. The
phenotypic and genotypic data were then analyzed using single trait
mixed linear model (MLM; Yu et al. 2006) or multi-trait mixed model
(MTMM; Korte et al. 2012) GWAS approaches to discover genetic
factors associated with several phenotypic traits.

Populations such as those used here that are small and pre-selected
for abiotic stress tolerance will also exhibit high LD. Therefore it is
important to determine the effective number of genomic regions in
that population and using that numberwhen performing a conservative
cut-off value test such as Bonferroni. Here we applied the simpleM
algorithm (Gao et al. 2008) to calculate that number of markers which
in turn was used to determine our P-value cutoff of -log10(P) = 4.1.

Poolingdataacrossdifferent experiments toextract factors that affect
a phenotype across those experiments normally assumes the population
parametersacross the twoexperimentsareequal.Thiswillnotbe thecase
when the extent of stress at two environments cannot be controlled. So,
when data from multiple locations or stresses were merged, Z trans-
formed data were used to provide a common relative estimate of the
phenotype (Figure S1). Often the response of two traits, or a single trait
scored in two environments are correlated, and the goal of discovering
genetic effects associated with these two situations is a goal of quanti-
tative genetics. Recently, multi-trait mixed models (MTMM) statistical
methods have been developed to uncover common genetic effects that
act in a pleiotropicmanner on two correlated traits (Korte et al. 2012). It
is predicted these effects would be components of a shared functional
pathway. The MTMM GWAS methodology has also been applied to

Figure 1 Maximum likelihood phylogenic tree of 769 genotypes from
Andean and Middle American gene pools using 5,637 loci with LD , 0.1.
Middle American genotypes = red and green; Andean genotypes = purple
and blue. BASEMeso = green; BASEAndean = blue.
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the discovery of genetic factors associated with the phenotypic expres-
sion of a single phenotype in two different environments. While the full
MTMMmodel uncovers both common and interaction genetic effects,
Korte et al. (2012) also provide scripts that can partition out these
common and interaction effects individually from that full model. Im-
portantly for small population sizes, the power of the MTMM approach
is greater than the marginal GWAS tests typical of mixed model statis-
ticalmethods because of the additional power obtainedwhen data for the
two traits (or environments) are considered jointly (Korte et al. 2012).

Mixed-linear model GWAS

Yield: Yield is the primary target for genetic improvement, and an
important genetic goal is to understand the response of yield to a specific
stress across locations. As mentioned above, both Nacome, HN and
JuanaDiaz,PRarehighheat stressenvironments.Theeffectofheat stress
onyieldandDTFwasassessedontheBASE_Mesopopulationgenotypes
evaluated in PR in 2015 and 2016, and HN in 2016 (Table S2). Since the
three locationswere considered different environments with potentially
different heat stress conditions, the phenotypic data were transformed
using the Z transformation, and the data were combined into a
single MLM GWAS analysis (Figure 3A). The peak SNP for yield
(Pv03:41,096,424 bp; P = 9.05E-8) is located on the distal end of chro-
mosome Pv03 and explains 14% of the variation in yield (Table S2).
This peak SNP is located in gene model Phvul.003G187400. Orthologs
of this gene model are associated with plants response to heat stress
(Li et al. 2013). Three other SNPs (Pv08:9,135,122 bp, Pv11:
41,873,950 bp; Pv11: 47,305,350 bp) defined other individual loci,
and each accounted for more than 7% of the variation, and along with
the peak SNP, these four SNPs collectively accounted for 20.2% of the
variation in yield under heat stress (Table S2).

DTF: ForDTFat the same location and years, themajorQTLpeak from
the jointMLM analysis was located in the Pv03:40.46-40.50Mb interval
(Figure 3B). The peak SNP was located at 40,504,942 bp (P = 9.02E-06)
and accounted for 9.9% of the variation. At the proximal end of this
interval, gene model Phvul.003G181900 is located. The highest level of
expression for this gene was noted in flower buds relative to other
developmental and anatomical tissues (https://phytozome.jgi.doe.gov/
pz/portal.html#!info?alias=Org_Pvulgaris). Three SNPs are located in
this genemodel, and these SNPs are in high LD relative to the peak SNP
located 36kb distal to Phvul.003G181900. DTF is often amajor factor in
yield performance. That trend was observed here with a Pearson cor-
relation of r=-0.35 between the two traits. To consider that correlation
in terms of the strong DTF genetic effect discovered in this analysis, the
allelic effects of the major SNP for DTF (Pv03: 40,504,942 bp) on yield
was evaluated. Figure 3C shows that selection for the early DTF allele

Figure 2 Relationship among the BASE_Meso and BASE_Andean
diversity panels. A. STRUCTURE analysis on 242 BASE genotypes with
125k SNPs. k = 2, was optimum number of subpopulations for the
BASE populations. B. ML phylogenetic tree of BASE genotypes. Green
are the BASE_Meso genotypes and purple and the BASE_Anjdean
genotypes

Figure 3 MLM GWAS analysis for BASE panels. A. Yield GWAS results for the panel grown under heat in Honduras and Puerto Rico in 2016. B.
Days to flower GWAS results for the panel grown under heat in Honduras and Puerto Rico in 2016. The P value cutoff for the two GWAS, as
determined using the Bonferroni test based on the effective number of SNPs was –log10(P)=4.10. C. Allelic performance for SNP S03_
40504942 for days to flower (red) and yield (green) grown under heat in Honduras and Puerto Rico in 2016.
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will have a positive effect on yield performance under high heat
conditions.

Macrophomina phaseolina infection: Field M. phaseolina infection
data were collected on the BASE_120 population grown in PR in
2014 under heat stress and in 2015 under drought stress. The data were
standardized using the Z transformation. The individual GWAS results
for the two years were consistent, and the same major locus was dis-
covered at Pv04/4.64-4.84 Mb (Figure 4A, 4B). The peak SNP in each
analysis was located at Pv04:4,665,828 bp and accounted for 8.9 and
7.8% of the variation, respectively, for the heat and drought trials.
When the data from the two years were combined, the joint GWAS
analysis with data from the two stresses also discovered the samemajor
QTL interval and peak SNP (P = 5.04E-5; Figure 4C). Consistent with
the individual trials, the peak SNP accounted for 8.4% of the variation
(Table S2). Additional SNPs were located at Pv04:25,282,114 bp
(P = 5.04E-5) and Pv10: 32,029,428 bp (P = 5.04E-5) in the combined
analysis. Collectively, these three SNPs accounted for 17.6% of the
observed variation. The A allele at the peak SNP was associated with
lower disease incidence in the two trials. This SNP peak is located in one
of the two major clusters of malectin/receptor-like kinase genes in the
common bean genome.

SPAD: SPAD readings are a general indicator of greenness of the
plant. Given proper flowering conditions, this trait can be an in-
dicator of yield potential. A MLM GWAS analysis was performed in
separate heat and drought environments in PR in 2016 using the
BASE_Meso population. Again, because the trials were under two

stress conditions, Z transform data were evaluated. This trait
appeared to be under different controls under the two conditions.
The major SNP peak under heat (Figure 4D) was located at
Pv09:17,981,113 (P = 1.08E-6) and accounted for 12.7% of the phe-
notypic variation (Table S2). This peak QTL region is located in a
cluster of chitinase genes. For drought, the strongest SNP peak
was located in the heterochromatic region between Pv08 18.4-21.5
Mb (Figure 4E) and accounted for 7.0% of the variation. This in-
terval was also detected in the combined analysis (Figure 4F).

Multi-trait mixed-linear model GWAS
The first MTMM analysis evaluated DTF measured in HN and PR
under heat stress conditions in 2016 (Figure 5A). The full MTMM
analyses showed that genetic correlations were significant (r = 0.96),
while the environmental correlations were not (Table 1). This result
suggests that genetic factors that are common or show an interac-
tion effect of significance between the two heat stress environments
may be discovered. Eleven different QTL regions were discovered
with a MAF. 0.05 that passed the Bonferroni cut-off in at least one
of the analyses (Table 2). The power of the MTMM approach is
demonstrated here by the observation that no genetic factor passed
the strict Bonferroni cut-off in the marginal test in PR (Table 2). Yet,
when the data from the two locations were considered jointly, the
full model revealed multiple genetic factors affecting DTF in the two
locations that passed the conservative Bonferroni significance cut-
off. Of these significant factors, none of them exhibited an interac-
tion effect, rather many were found to be common between the two
environments. This is encouraging for marker assisted breeding

Figure 4 Macrophomina infection rating GWAS for BASE_120 grown under heat in 2014 (A) and drought in 2015 (B) in Puerto Rico. (C) Joint
2014 and 2015 Macrophomina infection rating GWAS analysis for BASE_120 grown under in Puerto Rico. GWAS analysis for SPAD rating
for BASE_Meso grown under heat (D) and drought (E) in Puerto Rico in separate trials in 2016. (F Joint heat and drought SPAD reading
GWAS analysis.
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because only a single or a few markers may be needed for selec-
tion for days to flower in these two heat stress environments. Two
peaks were observed on the distal end of Pv03 at �40Mb that were
located 135.2 kb apart. On Pv11, significant peaks were observed
at 4.0 Mb and 45.3 Mb. These two are significant common factors
and had the same positive effect at both locations (Figure 5A).
Within these regions, significant SNPs were located in three can-
didate gene models (Phvul.003G179500, Phvul.003G187400,
and Phvul.011G159200). Candidate genes that are orthologs of
genes previously found to be involved in flowering and abiotic
stress response are located within 50kb of the significant peaks
(Phvul.003G239000, Phvul.011G045000).

The objective of the second MTMM analysis was to discover
genetic factors with pleiotropic effects for both DTF andDTMunder
heat stress (Figure 5B). The experiment with the BASE_Meso in
PR in 2016 population found 1) a significant genetic correlation
between the two traits, 2) the environmental effects were not sig-
nificant, and 3) both traits were heritable. Marginal effects of
a magnitude of –log10(P) . 5.0 were only observed for DTM.
For the full MTMM model, eight genomic regions passed the
–log10(P) . 5.0 threshold. Only one region, Pv11:47.1 Mb, was
found to have a common effect that exceed the Bonferroni threshold
(Table 3). 20kb upstream of the significant SNP was a gene model
(Phvul.004G166400) that is homologous to a tomato gene that affects

flowering and other growth functions (Bassa et al. 2013). None of
the effects acted differentially between DTF and DTM. Therefore,
selection on these markers can have positive effects in the same di-
rection for both traits.

DISCUSSION
As a species, P. vulgaris is somewhat unique in that the wild ancestor
split into two wild gene pools, the MA and Andean, �100k years ago
(Gepts et al. 1986; Mamidi et al. 2013; Schmutz et al. 2014). Only
recently did these gene pools undergo independent domestications
about �7k years ago (Mamidi et al. 2011a; Schmutz et al. 2014) in
distinct locations to form two distinct domesticated clades. Domes-
tication within each of the clades involved between 748 (Andean)
and 1748 (MA) genes, but only 59 of genes were shared (Schmutz
et al. 2014). And when the same gene is involved in the domesti-
cation, recent research has shown convergent evolution produced
unique alleles in each gene pool that were associated with the do-
mesticated phenotype (Kwak et al. 2012; McClean et al. 2018).
GWAS experiments are also revealing that adaptation to environ-
mental stress conditions evolved differentially in the two gene
pools as exemplified by the discovery that distinct genetic fac-
tors are associated with the response to flooding in the two gene
pools (Soltani et al. 2017, 2018). These independent evolutionary
paths have also affected marker development and deployment,

Figure 5 Multi-trait mixed model GWAS. A. Days to flower in Honduras, (Trait 1) and Puerto Rico (Trait 2) grown in 2016. B. Days to flower (Trait 1)
and days to maturity (Trait 2) grown in Puerto Rico in 2016. The full model identifies those SNPs with either an interaction or common effect. The
interaction model identifies SNPs that act differentially for the two traits or locations. The common model identifies SNPs that act in the same
direction for the two traits or locations. The P value cutoff for the two GWAS, as determined using the Bonferroni test based on the effective
number of SNPs was –log10(P)=4.10.
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most notably for disease resistance markers where quite often
a specific marker is only diagnostic in a one gene pool (Miklas
et al. 1993, 1996) while being monomorphic in the other pool re-
gardless of whether the genotype is resistant or susceptible. This is
the result of the strong population structure and distinct linkage
disequilibrium (LD) arrangements in the two gene pools.

From the perspective of developing association panels, the unique
LD structure within the two bean gene pools and the repeated
observation that phenotypes are often controlled by different genetic
factors in the two pools makes it imperative that genetic experiments
of bean be practiced within distinct MA and Andean panels. The
first GWAS panels developed for common bean, the MA (Mafi
Moghaddam et al. 2016) and Andean (Cichy et al. 2015a) Diversity
Panels, where used to survey phenotypic variation in U.S. commercial
and African landrace germplasm, respectively. In contrast, here the
BASE_120 and the BASE_Meso panels were developed for the pur-
poses of mapping genetic factors in germplasm important for Central
America and Caribbean production regions. The selection of geno-
types was successful as evidenced by the phylogenetic analysis which
shows that BASE_Meso genotypes cluster with other genotypes from
race Mesoamerican, the predominant race grown in these regions.
Because the BASE_Andean panel was developed for research in Af-
rican countries, a subset from the AndeanDiversity Panel was chosen.

As expected, these genotypes clustered with other germplasm from
the Andean gene pool.

Maximizing the number of SNPs within any collection of genotypes
will increase the likelihood of finding associations with a target pheno-
type in the full collectionor a subset of the genotypes.To leverage the full
set of GBS projects in common bean, all GBS reads from libraries based
on the two-enzyme (Schröder et al. 2016) protocol were pooled, and
new SNP calls made. This increased the number of SNPs for MA
genotypes from �160k to �205k. Previously, the ADP had only been
genotyped with the �6k SNPs from the BARCBean 6K_3 BeadChip
(Song et al. 2015). There are now �260k SNPs available for a large
collection of Andean genotypes. The density of SNPs is essentially equal
across the full genome of the two gene pools with an enrichment of
SNPs in the heterochromatic regions. This is actually a positive feature
because it will facilitate the mapping of phenotypes whose genetic
control is located in these low recombination regions of the genome.
These SNP data sets can also serve as a base to build much larger SNP
sets such as those developed for maize (Glaubitz et al. 2014).

One persistent challenge when searching for important genetic
factors related to a trait of interest is performance across locations.
These locations can represent similar environments such as regional
cropproductionsites that experience somewhat similarweatherpatterns
or diverse sites that cross national or continental boundaries. The critical

n Table 1 Pearson phenotypic, genetic and environmental correlations and joint heritability estimates for environmental DTF HN 2016 &
DF PR 2016 and DTF PR 2016 & DTM PR 2016 combinations

Genetic Environmental

Traits
Pearson
Corr. Corr. St. error P-value Corr. St. error P-value Joint heritabilitya

DTF HN 2016 & DF PR 2016 0.55 0.96 0.07 0.00 20.18 0.33 0.51 0.71/0.71
DTF PR 2016 & DTM PR 2016 0.68 0.90 0.07 0.00 20.40 0.87 0.53 0.89/0.75
a
Joint heritability estimates for the two traits are separated by a “/”.

n Table 2 Significant associations for days to flower measured in heat conditions in Nacaome, Hondouras (HN) and Juana Dias, PR (PR) on
the BASE_Meso panel in 2016. The MTMM statistical method and scripts (Korte et al. 2012) were used to calculate the marginal
associations in HN (DTF HN) and PR (DTF PR), the full mixed trait model (full), and the models that tested for interaction and common
effects for the two traits. SNPs that passed the Bonferonni test based on the effective number of markers (n = 463; Gao et al. 2008; -log10

‡ 4.10) for any of these analyses are shown in bold font. Minor-allele frequency ‡ 0.05

MTMM test [-log10(P)]

SNP Chr Position MAF DF HN DF PR Full Interaction Common

S01_27685396 1 27,685,396 0.094 6.33 0.36 7.83 2.19 7.07
S01_27685497 1 27,685,497 0.094 6.16 0.49 7.48 1.98 6.90
S02_38071921 2 38,071,921 0.052 5.97 0.85 8.32 2.17 7.60
S03_40276852 3 40,276,852 0.175 6.02 1.49 7.09 1.66 6.78
S03_40412039 3 40,412,039 0.189 5.89 1.58 6.63 1.81 6.18
S03_41096424 3 41,096,424 0.052 6.96 1.55 7.78 1.28 7.84
S03_47356534 3 47,356,534 0.113 7.07 1.65 8.29 1.72 7.98
S11_4021661 11 4,021,661 0.085 5.16 1.75 6.02 0.60 6.57
S11_10662631 11 10,662,631 0.090 5.87 1.26 6.39 0.91 6.72
S11_10662636 11 10,662,636 0.090 5.87 1.26 6.39 0.91 6.72
S11_10662653 11 10,662,653 0.090 5.87 1.26 6.39 0.91 6.72
S11_10662667 11 10,662,667 0.090 5.87 1.26 6.39 0.91 6.72
S11_10662679 11 10,662,679 0.090 5.87 1.26 6.39 0.91 6.72
S11_27278152 11 27,278,152 0.094 6.22 0.36 6.89 1.87 6.39
S11_27278162 11 27,278,162 0.094 6.22 0.36 6.89 1.87 6.39
S11_27278186 11 27,278,186 0.094 6.22 0.36 6.89 1.87 6.39
S11_36223457 11 36,223,457 0.071 5.67 0.34 6.45 1.66 6.13
S11_45290191 11 45,290,191 0.094 5.97 1.02 7.28 1.91 6.77
S11_47305350 11 47,305,350 0.057 6.73 1.88 6.82 1.39 6.76
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step is placing the phenotypic data on a standard scale. The standard
score (or Z transformation) is ideal for this purpose because phenotypic
values are scaled relative to the variation at the location. By pooling
standard score data across locations, a full data set is utilized and amore
accuratemeasureof the effect of specificgeneticphysicalpositionscanbe
assessed. The usefulness of this approach was demonstrated when we
comparedstandardDTFdatapooledacross locationsandMacrophomina
data pooled across stresses. For both traits, the pooled data identified
the same significant peak SNP regions that were observed in the
individual analyses with the untransformed data. MTMM methods
are another way of maximizing the data that is collected (Korte et al.
2012). These analyses provide a statistical framework for multiple
tests that can reveal common genetic effects that affect two traits or
one trait in two environments. In addition, MTMM testing can un-
cover interaction genetic effects that act in the opposite direction
between two traits or for a single trait in two environments. In the
latter case, this interaction reflects the genotype x environment in-
teraction effect that is important in the context of breeding for mul-
tiple environments. The combination of data for two traits or
environments can lead to the discovery of stronger effects than those
discovered using a single marginal analysis (Korte et al. 2012). This is
a direct advantage for a project with more limited resources because
statistically sound results can reveal important genetic relationships
that would not have been detected with a MLM analysis with smaller
panel sizes. We tested that premise on two data sets. The MTMM
analysis of DTF data from the BASE_Meso population grown in HN
and PR under heat in 2016 showed the full joint analysis out-
performed individual marginal analyses (Figure S2). The full model
also out-performed the individual marginal analyses when DTF and
DTM data were considered jointly.

In one case, it is useful when comparing two locations and searching
for SNPs associated with differential (or GxE) effects or SNPs that
condition a common response in both locations. This begins with a
determination of the genetic correlation of the response in the two
locations. For DTF, this correlation was high (r = 0.96) and very
significant (Table 1), and without environmental effects. This suggested
that common genetic effects were controlling the phenotypic response
in the two environments. From a plant breeding perspective, the de-
velopment of molecular markers that are functional across locations

should be possible. MTMM is also useful to determine SNP effects
associated with more than one trait. An example is DTF and DTM,
two traits often found to be correlated. These two traits had a very high
and significant genetic correlation (r = 0.90) that lacked an environ-
mental correlation. In this example, the MTMM full model was signif-
icant for 14 common effect SNP loci.

Candidate genes were selected from an interval that ranged from
50kbupstream to 50kb downstreamof the peak SNPusing the common
bean v2.1 genemodels (https://phytozome.jgi.doe.gov/). The peak QTL
region for DTF in the joint MLM analysis under heat stress in HN and
PR is located on Pv03 at 40.48-40.50 Mb. At this position, three SNPs
are located in Phvul.003G181900, an ortholog of the Arabidopsis BIM1
gene. In Arabidopsis, BIM1 functions in the brassinosteroid pathway to
regulate flowering through its interaction with SPL8 to promote anth-
esis (Xing et al. 2013). Previous research demonstrated that heat stress
in common bean causes indeshiscent anthers and abnormal pollen in
heat sensitive genotypes (Porch and Jahn 2001). These observations
support a role of the bean BIM1 ortholog as a strong candidate gene for
regulating flowering under heat stress. The peak common effect for
DTF in the MTMM analysis of flowering under heat stress in HN
and PR was also on Pv03 and mapped 40kb (and one gene away) from
Phvul.003G239000 at Pv03:47.36Mb. This gene is the bean homolog of
Arabidopsis HOS15, a gene associated with histone deacetylation and
epigenetic control of flowering (Zhu et al. 2008). The primary role of
HOS15 is the regulation of flowering under cold stress. The major
genetic association of HOS15 with flowering under heat stress might
suggest the gene may act as control factor under multiple temperature
stresses.

The peakSNPdiscovered ina jointMLManalysis for yield over years
in the HN and PR heat stress environments is located in gene model
Phvul.003G187400. This SNP was annotated as a missense variant.
This model contains a DUF538 domain that is a key signature of the
DUF538 superfamily whose members are well-known stress-related
proteins in plants (Gholizadeh 2016). A previous study on switch-
grass showed that a DUF538 domain protein was significantly
up-regulated in leaves under high heat conditions while expression
was very low under normal conditions (Li et al., 2013). DUF538
proteins are putative chlorophyll hydrolyzing enzymes that function
in the ROS detoxification system when the plant is exposed to heat

n Table 3 Significant associations for days to flower (DTF) and days to maturity (DTM) measured in Nacaome, Juana Dias, PR on the
BASE_Meso panel. The MTMM statistical method and scripts (Korte et al. 2012) were used to calculate the marginal associations for DTF
and DTM, the full mixed trait model (full), and the models that tested for interaction and common effects for the two traits. SNPs that
passed the Bonferonni test based on the effective number of markers (n = 463; Gao et al. 2008; -log10 ‡ 4.10) are shown in bold font and
underlined. Minor-allele frequency ‡ 0.05

MTMM test [-log10(P)]

SNP Chr Position MAF DTF DTM Full Interaction Common

S03_51487987 3 51,487,987 0.08 0.76 4.20 5.32 3.54 3.13
S03_51737958 3 51,737,958 0.13 2.01 5.43 5.69 2.52 4.52
S03_51737987 3 51,737,987 0.11 2.10 5.19 5.46 2.39 4.41
S03_51773012 3 51,773,012 0.11 2.10 5.19 5.46 2.39 4.41
S03_51773026 3 51,773,026 0.11 2.10 5.19 5.46 2.39 4.41
S03_51977930 3 51,977,930 0.08 0.63 4.03 5.23 3.60 2.96
S03_51978029 3 51,978,029 0.08 0.63 4.03 5.23 3.60 2.96
S03_51978076 3 51,978,076 0.08 0.63 4.03 5.23 3.60 2.96
S03_52011377 3 52,011,377 0.08 0.63 4.03 5.23 3.60 2.96
S03_52321115 3 52,321,115 0.09 0.57 4.01 5.14 3.57 2.90
S03_52607649 3 52,607,649 0.08 0.09 3.58 5.54 4.55 2.32
S04_46335883 4 46,335,883 0.40 1.11 4.33 5.07 2.72 3.68
S04_47068592 4 47,068,592 0.28 2.13 6.35 6.86 2.81 5.47
S08_24957350 8 24,957,350 0.20 0.08 3.82 5.13 3.89 2.56

Volume 9 June 2019 | Common Bean GWAS Under Abiotic Stress | 1889

https://phytozome.jgi.doe.gov/


and drought stress (Gholizadeh et al. 2015 and Li et al. 2013), and
ROS detoxification enhances heat and drought stress tolerance (You
and Chan 2015). Because the exact function of DUF538 proteins is
yet unknown, the genetic association of this gene as a yield factor
under heat stress may provide a link between cytosolic protection
(Gholizadeh 2016) and yield performance. This important molecu-
lar link to yield is suggested by the fact that the SNP in this gene
accounts for 13.7% of the variation in yield.

Leaf senescence and the associated loss of greening is a result of
multiple stresses on the plant including excessive heat (Lim et al. 2007).
The SPAD rating under heat stress is one indicator of variation in the
response to heat stress. SPAD-related QTL can point to important
genetic factors associated with one aspect of the heat stress response.
The peak MLM QTL for SPAD rating under heat stress is located at
Pv09:17.99 Mb, and this QTL is located within a cluster of basic chiti-
nase genes. The previous observation that chitinase genes are involved
in both leaf development and senescence (Quirino et al. 2000) points to
a gene in this cluster as strong candidate gene for the whole plant
response under heat stress.

The two peak SNPs for response to M. phaseolina in the MLM
analysis under heat and drought stress are located at positions
Pv04:4,639,929 bp and Pv04: 4,639,994. These SNPs are located within
a cluster of seven Malectin/receptor-like protein kinase genes. Another
large cluster ofMalectin/receptor-like protein kinase genes is located on
Pv08. This Pv08 cluster contains multiple paralogs of the bean COK-4
gene, and one of the bean paralogs was recently shown to rescue
Arabidopsis mutant FER lines susceptible to Pseudomonas syringae
(Azevedo et al. 2018). Receptor protein kinase genes are one compo-
nent of the plant immune signaling system (Tena et al. 2011), and in
beans and other species they are involved in the immune signaling
pathway that is initiated after pathogen invasion (Azevedo et al.
2018; Stegmann et al. 2017; Minkoff et al. 2017; Masachis et al. 2016
and Kessler et al. 2010). The regulation depends on the perception of a
hormone peptide called RALF. The malectin/receptor kinase/RALF
complex has a negative effect on the plant immune system by pre-
venting the modulation of FLS2-BAK1 (FLAGELLIN-SENSING2/
BRASSINOSTEROID INSENSITIVE 1–associated kinase) complex
mediated by FER. FLS2-BAK1 has a positive effect on plant immune
system after pathogen invasion by initiating an immune signaling at
the plant cell membrane. Therefore, mutations affecting the forma-
tion of malectin/receptor kinase/RALF complex will lead to disease
following pathogen invasion (Azevedo et al. 2018; Stegmann et al.
2017). The discovery that a common bean malectin/receptor-like
protein kinase homolog can act as a disease resistance gene supports
the hypothesis that a member of the Pv04 cluster can be a strong
candidate to provide M. phaseolina resistance.

In general, these GWAS results demonstrate that significant factors
with relative high effects can be discovered using moderate size pop-
ulations along with high-density SNP data sets using single and multi-
trait analyses. These analyses will discover polymorphisms within genes
with strong candidate credentials, and these SNPpolymorphisms canbe
used as selection tools for traits important for high crop productivity.
This makes it now possible for groups of bean researchers with modest
resources touse thepanelsandSNPdata setsdevelopedhere tosearchfor
genetic factors and polymorphisms that would be useful for improve-
ment in their breeding programs.
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