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Abstract
Plant breeders face the challenge of genotype × environment interaction (G ×
E) in comprehensively breeding for expanded geographic regions. An improved

understanding of G × E sensitivity of traits and the environmental features that

effectively discriminate among genotypes will enable more efficient breeding efforts.

In this study of 31 maize (Zea mays L.) inbreds grown in 36 environments that are

part of the Genomes to Fields Initiative, we measured 14 traits, including flowering

date, height, and yield components (i.e., ear and kernel dimensions) to (i) identify

traits that are the most sensitive indicators of G × E; (ii) determine how geographic

location and weather factors influence environments’ discriminability of inbreds;

and (iii) detect patterns of stability in better and worse discriminating environments.

Genotype × environment interaction explained between 9.0–20.4% of the phenotypic

variance with greater effects in the yield-component traits. Discriminability of

environments varied by trait. Midwest locations (where 26 of the 31 inbreds were

developed) were among the most discriminating environments for more traits, while

environments in the West and East tended to be less discriminating. Weather factors

during silking were significantly different between the most and least discriminating

environments more often than average weather across the season or during the period

from planting to silking. Stability of genotypes varied by trait, and performance

was usually not correlated with stability. The dissection of complex traits, such

as yield into component traits, appears to be a useful approach to understand how

environmental factors differentially affect phenotype.

1 INTRODUCTION

The variation in plants’ observed phenotypes can be parti-

tioned into three main factors of interest—genotype, envi-

ronment, and genotype × environment interaction (G × E)—

in addition to other minor factors and measurement error. In

plant breeding, G × E plays an important role, as the rela-

tive performance of different genotypes in different environ-

ments influences plant breeders’ recommendations of best-

performing varieties for specific regions. Typically, plant

breeders have minimized G × E by producing cultivars that

are appropriate for regions that share common environmental

characteristics (Bernardo, 2010). With improved understand-

ing of specific components of genotype, environment, and

G × E, breeders may be able to more deliberately use data-

based approaches to enhance their ability to position a larger

number of genotypes in environments to maximize produc-

tivity. Grain yield is of chief importance in breeding maize

(Zea mays L.), and is commonly considered alongside sev-

eral traits that affect it indirectly or directly such as flowering,

height, and yield-component traits. Due to their differences

in heritability and sensitivity to environmental factors, these
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different types of traits may show different levels of G × E.

Flowering traits, such as days to anthesis and days to silking,

provide information on the genotype’s degree of adaptation

to the environment, and therefore its potential performance

and typically shows less G × E than productivity traits. In

addition to serving as an indicator of overall plant health or

stress, plant and ear height affect several factors that, in turn,

influence yield, such as potential for lodging and suitability

for machine harvest. Plant and ear height are highly heritable

traits (Hung et al., 2012; Peiffer et al., 2014), suggesting that

they may show less G × E. While grain yield has low her-

itability and is sensitive to environmental influences, yield-

component traits tend to have higher heritability (Austin &

Lee, 1996, 1998; Messmer et al., 2009).

The magnitude of the G × E variance (in other words, the

proportion of phenotypic variation due to the G × E compo-

nent) varies across traits and is related to how genetic and

environmental factors affect that trait throughout the plant’s

development. While plant breeders and geneticists may refer

to these differences as G × E “sensitivity” in general terms,

few field studies of crop species have investigated relative G ×
E variance across traits. Here, we introduce only a few papers

that focused on the magnitude of G × E across different traits,

recognizing that an extensive body of literature exists for

G × E in more general terms. Two studies of protein quality

in maize examined the effect of G × E on several traits, and

one of them found different levels of G × E sensitivity across

traits. In one study, 62 maize hybrids or open-pollinated cul-

tivars were tested at 13 tropical locations across four conti-

nents. Analysis of variance (ANOVA) indicated that G × E

had a significant effect (P < .05) on all the traits assessed,

namely grain yield, endosperm modification, protein content

of grain, tryptophan content of grain, and tryptophan con-

tent of protein (Pixley & Bjarnason, 2002). The other study

assessed 30 experimental hybrids in six trials, including two

with low-nitrogen stress and two with drought stress. Geno-

type × environment interaction had a significant effect for

anthesis-silking interval, senescence score, ears per plant, and

grain yield (P < .01) as well as protein in grain and lysine in

protein (P < .05) but not for ear rot, tryptophan in grain, lysine

in grain, or tryptophan in protein (Zaidi, Vasal, Maniselvan,

Jha, & Singh, 2008).

To be useful for breeding, a test environment should be

both representative of a growing region and discriminating

of genotypes, meaning that it provides information about dif-

ferences in their performance (Yan, Kang, Ma, Woods, &

Cornelius, 2007). An environment’s discriminating power can

be quantified in terms of the within-environment heritability

or the standard deviation of genotype means in the environ-

ment, which corresponds to the length of the environment

vector in the “discriminating power vs. representativeness”

view of the genotypic main effects and genotype × environ-

ment interactions (GGE) biplot (Yan et al., 2007). In a study

of 13 maize hybrids grown in 10 locations over 2 yr, a signif-

icant G × E effect explaining 15.9% of the variance in grain

yield was detected (Fan et al., 2007). Using GGE analysis,

the authors identified two least-discriminating locations and

one least-representative location, ultimately classifying four

environments as the least ideal (three sites with one location

classified as non-ideal in both years). They concluded that

GGE analysis would be useful for making better use of lim-

ited resources available for the testing program by choosing

appropriate test environments. Only a few other studies have

used the GGE analysis to evaluate test environments for vari-

ous traits in other crops, including yield in soybean [Glycine
max (L.) Merr.] (Yan & Rajcan, 2002), lint yield and fiber

length in cotton (Gossypium hirsutum L.; Blanche & Myers,

2006), yield in common bean (Phaseolus vulgaris L.; Kang,

Aggarwal, & Chirwa, 2006), and cane yield, sucrose yield,

and theoretical-recoverable sucrose in sugarcane (Saccharum
spp.) cultivars (Glaz & Kang, 2008). These studies did not

investigate which weather factors may be associated with dis-

criminability.

Numerous studies in maize have assessed the stability of

inbreds or hybrids, using linear regression, additive main

effects and multiplicative interactions (AMMI), and GGE

analyses. For example, 101 maize hybrids were grown at

three Illinois locations over 2 or 3 yr (depending on loca-

tion) and under varying agronomic treatments (low versus

high nitrogen fertilizer and standard versus high plant den-

sity; Mastrodomenico, Haegele, Seebauer, & Below, 2018).

The authors concluded that yield stability, in terms of slope

from linear regression analysis, depended more on a hybrid’s

response to nitrogen level than on its tolerance of high plant

density. Using AMMI analysis, Zaidi et al. (2008) identified

quality protein maize hybrids that were least or most stable

for several traits. They concluded that many hybrids were sta-

ble for some traits, like tryptophan in grain, while relatively

few hybrids were stable for other traits like grain protein con-

tent. The “mean vs. stability” view of the GGE biplot offers

another method for quantifying stability. In this view, geno-

type stability is approximated based on the average environ-

ment coordination (AEC) ordinate axis, which corresponds to

genotypes’ contributions to the G × E interaction. Genotypes

lying near the AEC abscissa are more stable than those far-

ther from it and are ranked consistently across environments

(Yan et al., 2007). Meseka et al. (2016) used GGE analy-

sis in a study of nine three-way cross yellow maize hybrids

grown in 17 environments in the savannas of West Africa.

They identified two hybrids with particularly good stability

across all environments, including three with drought stress

conditions.

The purpose of this experiment was to determine the most

useful approach to study G × E, especially in terms of which

traits are most informative. An in-depth analysis of the inter-

play of G×E sensitivity among several traits, discriminability
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among environments, and stability among genotypes will

improve our understanding of the relationships among these

factors in plant breeding. This knowledge will enable more

comprehensive breeding to exploit G × E, instead of focusing

on breeding for a defined region to reduce G×E. Accordingly,

our objectives for this research were to (i) determine whether

G × E interaction is present for several agronomic, pheno-

logical, and morphological traits in 31 diverse maize inbred

lines across more than 30 environments and to establish

which traits are most sensitive to G × E; (ii) determine which

environments are best at discriminating among genotypes

for various traits and what geographical and environmental

factors contribute to discriminability for those traits; and (iii)

ascertain the level of stability for the set of maize inbred lines

and detect differences in stability between sub-groups of

inbreds.

2 MATERIALS AND METHODS

2.1 Germplasm, environments, phenotypic,
and weather data collection

A set of 31 maize inbreds, chosen to represent a range of matu-

rities and release dates, was selected for this study (Table 1).

We chose to use inbreds for this study due to their higher

G × E sensitivity compared to hybrids. The inbreds were

grown in 36 environments (15 trials in 12 US states in 2014

and 21 trials in 14 states in 2015; Table 2; Supplemental Fig-

ure S1) that are part of the Genomes to Fields Initiative (Gage

et al., 2017). The locations of these trials were geographically

diverse, ranging from 30.55–45.00◦ latitude and from −75.75

to −102.93◦ longitude. We defined environment as the com-

bination of site and year because the physical locations of

specific trials were often different each year, even when they

were nearby. For example, IA_1 in 2014 is not the same field

location as IA_1 in 2015, as indicated by the latitude and lon-

gitude for these locations. The trials were grown in a random-

ized complete block design using two replications per envi-

ronment (with the exceptions of GA2_2014, which had three

replications and WI1_14, which had four replications). Plant-

ing density ranged from about 39,500–123,000 plants per

hectare.

Phenotypic data were collected for 14 phenological, mor-

phological, and yield-component traits. Days to anthesis

referred to the number of days between planting and when

50% of the plants in a plot exhibited anther exertion on more

than half of the tassel main spike. Days to silking referred to

the days between planting and when 50% of the plants in a plot

showed silk emergence. These flowering traits were converted

to growing degree units (GDU) accumulated from planting to

the flowering date using air temperature (◦C) data collected in

the field at each location. First, temperatures above 30◦C were

set to 30◦C, and temperatures below 10◦C were set to 10◦C

(Gilmore & Rogers, 1958). Temperature was converted from
◦C to ◦F, and then the equation GDU = [(𝑇min + 𝑇max)∕2] −
50 was used to calculate the GDU for each day from planting

to the flowering date. Plant height (cm) referred to the dis-

tance from the base of the plant to the ligule of the uppermost

leaf at reproductive maturity. Ear height (cm) was measured

as the distance from the ground to the uppermost ear bearing

node at reproductive maturity.

To measure yield-component and ear and kernel mor-

phology traits, the primary ear was collected from three

representative plants per plot at grain physiological matu-

rity. The ears from each trial location were shipped to the

University of Wisconsin for imaging where they were dried

to approximately 10–15% kernel moisture. Images of the

dried ears and were collected using EPSON Perfection

V700 PHOTO flatbed scanners. The ears were shelled, and

the weight of the shelled kernels from the three ears was

recorded as plot grain weight before taking a sample of

kernels for imaging. Measurements of ear and kernel traits

were automatically computed from these images using a pre-

viously described analysis pipeline (Miller et al., 2017) and

as implemented in workflows publicly available on CyVerse.

Image-based measurements were obtained for ear length

(mm), ear width (mm), kernel depth (mm), kernel thickness

(mm), kernel width (mm), and kernel area (mm2). The analy-

sis pipeline also counted the number of kernels in the image,

and these kernels were weighed manually. These measure-

ments were combined to calculate mean kernel weight (g).

Kernels per row was also calculated based on the ear length

and kernel thickness. Kernel row number was counted manu-

ally as the number of kernel rows around the middle to lower

third of an ear.

Weather data were collected in each environment

using WatchDog Model 2700 (Spectrum Technologies,

East-Plainfield, IL) weather stations. At 30-min intervals

throughout the growing season, data were collected for air

temperature (◦C) and rainfall (mm). Several environments

were irrigated (Table 2); at some of these, irrigation was

tracked along with any precipitation received (DE1_14,

GA2_14, DE1_15, GA1_15, and NC1_15) while in other

environments, irrigation was not tracked (NC1_14, TX1_14,

NY2_15, and TX3_15). To verify calibration and identify

erroneous data points, weather station observations were

compared to nearby National Weather Service (NWS)

Automated Surface Observing Systems (ASOS) data. The

calibrated dataset includes observations from the NWS

ASOS as well as a “calibrated” column for most elements.

Where available, these calibrated data were used for our

analyses. The phenotypic and weather data sets are described

in more detail (AlKhalifah et al., 2018) and are avail-

able to view and download (2014 agronomic and weather

data: https://doi.org/10.7946/P2V888; 2015 agronomic and

https://doi.org/10.7946/P2V888
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T A B L E 1 Thirty-one inbred genotypes evaluated across 36 environments and their pedigree, heterotic group, Plant Variety Protection status,

and year of release

Genotype Pedigree Groupa Ex-PVPb Origin
Year of
Release

740 Mexican Deep Kernel X Mo17(4) NSS Ex-PVP MN 1988

2369 2702H X B73(2) SSS Ex-PVP CO 1989

A619 A171 X Oh43(2) NSS Public MN 1961

A632 Mt42 X B14(4) SSS Public MN 1963

A634 Mt42 X B14(4) SSS Public MN 1966

B14 BSSS-C0 SSS Public IA 1953

B37 BSSS-C0 SSS Public IA 1958

B73 Selected from advanced recurrent selection population

(C5) of Iowa Stiff Stalk Synthetic (BSSS)

SSS Public IA 1972

C103 Lancaster Surecrop (from Noah Hershey) NSS Public CT 1949

CM105 CMV3 X B14(2) SSS Public MB Circa 1980

LH123HT Pioneer hybrid 3535 NSS Ex-PVP IA 1985

LH145 A632Ht X CM105 SSS Ex-PVP IA 1984

LH162 ND246 x Mo17 NSS Ex-PVP IA 1991

LH195 LH117 X LH132 SSS Ex-PVP IA 1991

LH198 LH132(2) X B84 SSS Ex-PVP IA 1993

LH74 A632 x B73 SSS Ex-PVP IA 1983

LH82 Holden line 610 (610 = W153R type) X LH7 NSS Ex-PVP IA 1985

Mo17 C.I.187–2 X C103 NSS Public MO 1964

PB80 (10670–1 X B73) X B73Ht(BC6) SSS Ex-PVP IL 1988

PH207 PHG3BD2 X PHG3RZ1 NSS Ex-PVP IA 1984

PHB47 SD105 X B37(3) SSS Ex-PVP MN 1984

PHG35 G3BD2 X H7FS6 NSS Ex-PVP IA 1983

PHG39 A33GB4 X A34CB4 SSS Ex-PVP IN 1983

PHG47 PH041 X MKSDTE NSS Ex-PVP MN 1987

PHJ40 PHB09 X PHB36 SSS Ex-PVP ON 1987

PHN82 PHG29 X HD38 NSS Ex-PVP IA 1990

PHV63 PH555 X Zap < 4CB (Zapalote chico and Corn Belt

inbreds put together to develop insect tolerance)

NSS Ex-PVP TN 1988

PHW52 B73 X G39 SSS Ex-PVP IA 1989

PHZ51 PH814 X PH848 NSS Ex-PVP IA 1987

W117 643 X Minnesota #13 NSS Public WI 1963

Wf9 Reid Yellow Dent (Indiana station strain) NSS Public IN 1936

aHeterotic group abbreviations: NSS-non-stiff stalk synthetic, SSS-stiff stalk synthetic
bEx-PVP, expired Plant Variety Protection; Public, a publicly released inbred.

weather data: https://doi.org/10.7946/P24S31; 2014 and

2015 yield-component imaging data: https://doi.org/10.

7946/P2C34P).

2.2 Data cleaning and statistical analysis

Extreme outliers beyond five standard deviations from the

mean of each trait were removed from the data set. This

data cleaning step allowed us to remove erroneous data

points, especially those that may have been generated as part

of our automated, high-throughput imaging system (Miller

et al., 2017). The phenotypic data were analyzed using the

lme4 package (Bates, Maechler, Bolker, & Walker, 2015)

for R (R Core Team, 2019) based on the model 𝑌𝑖𝑗𝑘 = μ +
𝐸𝑖 + 𝑟(𝐸)𝑗 + 𝐺𝑘 + 𝐺𝐸𝑗𝑘 + ε𝑖𝑗𝑘, where Yijk was the response

variable of the kth genotype (G) in the jth replication (r)

nested in the ith environment (E). The residual error εijk was

assumed to be independent and following a normal distribu-

tion [∼ iidN(0, σ2ε)]. Except for the grand mean (μ), all factors

https://doi.org/10.7946/P24S31
https://doi.org/10.7946/P2C34P
https://doi.org/10.7946/P2C34P
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T A B L E 2 Thirty-six environments where the set of 31 inbreds were evaluated, their location, latitude (Lat), longitude (Long), plot area,

planting density, planting and harvest dates, and irrigation status

Plant density
ID Location Lat Long Plants ha−1 Planting datea Harvest date Irrigation
DE1_14 Newark, DE 39.67 −75.75 86112 2014/05/13 2014/10/07 yes

GA2_14 Tifton, GA 31.43 −83.58 47075 2014/04/17 2014/08/25 yes

IA1_14 Ames, IA 41.99 −93.69 69445 2014/05/24 2014/09/30 no

IA2_14 Ames, IA 42.02 −93.77 69445 2014/05/09 2014/09/30 no

IA3_14 Ames, IA 42.01 −93.67 39541 2014/05/20 2014/11/10 no

IL1_14 Urbana, IL 40.06 −88.23 73810 2014/05/06 2014/09/30 (rep 1) no

2014/10/07 (rep 2)

IN1_14 West Lafayette, IN 40.49 −87.01 123017 2014/05/30 2014/10/28 no

MN2_14 St. Paul, MN 45.00 −93.18 78284 2014/05/06 2014/10/10 no

NC1_14 Clayton, NC 35.67 −78.50 106224 2014/04/14 2014/08/29 yes

NE1_14 Lincoln, NE 40.83 −96.66 129167 2014/05/24 2014/10/15 no

NY1_14 Aurora, NY 42.73 −76.65 68890 2014/05/29 2014/12/08 no

PA1_14 Pennsylvania Furnace, PA 40.71 −77.96 71760 2014/05/31 2014/08/19 no

TX1_14 College Station, TX 30.55 −96.43 102514 2014/03/14 2014/07/25 yes

TX2_14 College Station, TX 30.55 −96.43 102514 2014/03/14 2014/07/29 no

WI1_14 West Madison, WI 43.06 −89.53 90644 2014/05/09 2014/10/29 no

DE1_15 Newark, DE 39.67 −75.75 86112 2015/06/16 and

2015/06/17

2015/10/21 yes

GA1_15 Tifton, GA 31.51 −83.56 64071 2015/04/22 2015/08/07 yes

IA1_15 Ames, IA 42.02 −93.77 69445 2015/05/13 2015/09/30 no

IA2_15 Ames, IA 42.01 −93.79 69445 2015/06/09 2015/10/07 no

IA3_15 Ames, IA 42.00 −93.66 53820 2015/05/19 2015/10/22 no

IA4_15 Ames, IA 42.04 −93.71 45264 2015/06/02 2015/11/20 no

IL1_15 Urbana, IL 40.06 −88.23 73810 2015/04/30 2015/10/01 no

IN1_15 West Lafayette, IN 40.48 −87.00 123017 2015/05/14 2015/11/03 no

KS1_15 Manhattan, KS 39.21 −96.60 71760 2015/04/23 2015/09/21 no

MN1_15 St. Paul, MN 44.99 −93.18 78284 2015/05/05 2015/10/26 no

MO1_15 Columbia, MO 38.90 −92.21 74750 2015/05/05 2015/09/23 no

MO2_15 Columbia, MO 38.90 −92.21 74750 2015/05/05 2015/09/23 no

NC1_15 Clayton, NC 35.67 −78.51 106224 2015/04/29 2015/09/16 yes

NY1_15 Aurora, NY 42.79 −76.65 68890 2015/06/05 approx. 2015/11/23 no

NY2_15 Aurora, NY 42.72 −76.66 68890 2015/05/24 2015/10/09 yes

SD1_15 New Underwood, SD 44.21 −102.93 51667 2015/05/22 2015/10/28 no

TX1_15 College Station, TX 30.55 −96.43 102514 2015/03/07 2015/07/27 no

TX2_15 College Station, TX 30.55 −96.43 102514 2015/04/02 2015/07/28 no

TX3_15 Halfway, TX 34.19 −101.95 80730 2015/04/25 2015/09/15 yes

WI1_15 West Madison, WI 43.06 −89.53 90644 2015/06/09 2015/10/09 no

WI2_15 Arlington, WI 43.33 −89.33 90644 2015/05/29 2015/10/09 no

aDates in YYYY/MM/DD format.

were considered to be random effects. Each factor’s signifi-

cance was tested using the ranova function of the lmerTest

package (Kuznetsova, Brockhoff, & Christensen, 2017) for

R (R Core Team, 2019). Best linear unbiased predictions

(BLUPs) of genotype performance were calculated from this

model. Inbred line mean heritability across all environments

was calculated as ℎ2 =
σ2
𝐺

σ2
𝐺
+(σ2

𝐺𝐸
∕𝑒)+(σ2ε∕𝑟𝑒)

, where σ2
𝐺

was the

genotypic variance, σ2
𝐺𝐸

was the G × E variance, σ2ε was the

error variance, for e number of environments and r number of

replications per environment. The variance component val-

ues were also used in calculating the percent of phenotypic



FALCON ET AL. 7Crop Science

variance explained by each factor of the model. Pearson cor-

relations were calculated between all traits measured using

BLUPs. Pearson correlation coefficients were also calculated

between trait performance (in terms of BLUP values) and

three stability parameters (Type II stability, mean square error,

and stability from the GGE analysis described below). In both

cases, correlations were considered significant if P < .05. To

compare different concepts of stability, the Spearman rank

correlation was calculated between the three types of stability

(defined as the median stability value across all traits for each

genotype).

To compare stability among groups of genotypes, we used

two categorizations of the inbreds. First, we divided the group

of inbreds based on the most typical heterotic split known in

North American maize germplasm: the non-stiff stalk (NSS)

versus stiff-stalk synthetic (SSS) heterotic pools. Inbreds from

the SSS pool, with their history as the female parents of choice

to provide enough seed to make hybrid production economical

(Reif, Hallauer, & Melchinger, 2005) and ongoing improve-

ment for relevant traits (Duvick, Smith, & Cooper, 2004) are

expected to have better kernel production. Non-stiff stalks are

generally any lines that did not fall into the SSS pool. Sec-

ond, we looked at the recently expired Plant Variety Protec-

tion (ex-PVP) inbreds versus the public inbreds. With one

exception (CM105), the public inbreds were released earlier

(in or before 1972) than the ex-PVP inbreds and are consid-

ered to have a lower degree of selectness. To test for signif-

icant differences in the mean regression slope, Type II sta-

bility, MSE, and GGE stability values between the respective

categories, t-tests were conducted in R (R Core Team, 2019).

The stability of inbred lines in the Midwest environments

(locations with longitude between −85◦ and −95◦: Iowa, Illi-

nois, Indiana, Minnesota, Montana, and Wisconsin in both

years) was compared with their stability in all other environ-

ments (West, longitude west of −95◦: locations in Kansas,

Nebraska, South Dakota, and Texas in both years; and East,

longitude east of −85◦: locations in Delaware, Georgia, North

Carolina, New York, and Pennsylvania in both years) using

t-tests.

Several weather data parameters were calculated for each

environment during three time periods (i) over the entire sea-

son, (ii) from planting date to the start of silking, and (iii)

the period bracketing silking (14 d before and after silking).

Total precipitation was calculated by summing the daily pre-

cipitation for each time period. Environments where irriga-

tion was not tracked were excluded from analyses of the effect

of precipitation on discriminability. Minimum, median, and

maximum temperature during each time period was calcu-

lated. Additionally, the number of hours when temperature

was greater than 30, 25, and 22◦C or less than 22◦C was cal-

culated for each time period.

2.3 Quantification of G × E interaction

2.3.1 Regression stability analysis

Prior to performing the regression analysis, trait values were

standardized using the following equation to allow compari-

son of MSE values across traits, which have different scales of

measurement:𝑌𝑖𝑗𝑘standardized
= [𝑌𝑖𝑗𝑘 − 𝑚𝑒𝑎𝑛(𝑌 )]∕𝑠𝑑(𝑌 ), where

Yijk was the response variable of the kth genotype (G) in the

jth replication (r) nested in the ith environment (E) and Y was

the response of all genotypes in all replications in all environ-

ments. This standardization of each trait ensured that the value

of MSE reflected variability and not the absolute scale of a

given trait (e.g., anthesis with values in the 1000s of GDU ver-

sus kernel thickness which has values in the 1s of mm). Then,

for each trait, values for each genotype were regressed on

the environmental means of all genotypes (Finlay & Wilkin-

son, 1963) following the model 𝑌𝑖𝑗 = μ𝑖 + β𝑖𝐼𝑗 + δ𝑖𝑗 , where

Yij is the mean phenotypic performance of genotype i in

environment j; μi is the mean of genotype i across environ-

ments; βi is the linear regression coefficient of Yij on Ij; Ij
is the effect of environment j (i.e., the environmental index,

or in this study specifically, the environmental mean); and

δij is the deviation of sYij from the regression fitted value

of genotype i in environment j. The linear regression coeffi-

cient, β𝑖 (i.e., slope of the regression line), was used to quan-

tify Type II stability (β𝑖 = 1) as the absolute value of slope

minus one (|β𝑖 − 1|), and the mean squared error (MSE) was

used to quantify Type III stability. Type I (β𝑖 = 0) was not

examined since it is not useful for breeding efforts. To quan-

tify trait sensitivity to G × E, the variance of slope and of

MSE in the linear regression model were compared among

traits.

2.3.2 AMMI analysis and biplot

We used AMMI analysis and biplots to examine G × E

sensitivity since it represents the genotype and environment

factors. To conduct AMMI analysis and construct AMMI

biplots, the agricolae package (de Mendiburu, 2019) for R

(R Core Team, 2019) was used. Since the AMMI2 biplot,

which depicts Principal Components 1 and 2 (PC1 vs. PC2),

tends to represent much of the G × E pattern (Gauch, 1988).

The total Euclidean distance between all pairs of genotypes

and between all pairs of environments in this biplot was cal-

culated as another quantification of trait sensitivity to G ×
E. As described above for the linear regression, the pheno-

typic data were standardized before running the AMMI anal-

ysis so that the Euclidean distance could be compared across

traits.
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2.3.3 GGE analysis and biplot

We used GGE analysis and biplots, which examine genotype

and G × E, to look at genotype stability and environment dis-

criminability. Prior to performing the GGE analysis, trait val-

ues were standardized (as described for the linear regression

analysis) to allow comparison of discriminability and stability

values across traits. To prepare the data for GGE analysis, a

mean value across replications for each genotype in each envi-

ronment was calculated. Environments and genotypes with

more than 30% missing data were removed from the data set.

Subsequently, remaining missing data points were estimated

based on the mean of the available data for the correspond-

ing environment and genotype. The GGE models were cre-

ated using the GGEBiplots package (Dumble, 2017) for R (R

Core Team, 2019).

Each environment’s discriminating power was quantified

based on the “discriminating power vs. representativeness”

view of the GGE biplot. In this type of plot, the length of

the environment vector (from environment to origin) cor-

responds to the standard deviation of genotype means in

the environment, which is a measurement of discriminabil-

ity (Yan et al., 2007). We did not investigate representative-

ness since inbred lines, which were used in this study, may

not give meaningful results on representativeness of environ-

ments for testing hybrids. For each trait, the five most dis-

criminating and five least discriminating environments were

compared based on their latitude, longitude, planting density,

and weather data. These comparisons were tested for statisti-

cal significance using a t-test. Genotype stability was quan-

tified based on the “mean vs. stability” view of the GGE

biplot with genotypes lying near the AEC abscissa being

considered as more stable than those farther from it. Cus-

tom R scripts were used to extract the length of the envi-

ronment vector and the genotype distance from the AEC

abscissa. Scripts for all the analyses described are available

at https://github.com/cmfalcon/G2F_GxE_inbreds.

3 RESULTS

3.1 Variation in agronomic and
yield-component traits

Across environments and genotypes, a wide range of pheno-

typic values were observed (Supplemental Figure S2, S3).

Between 1.20–2.17-fold differences in mean values were

observed among the agronomic and yield-component traits

(Supplemental Table S1). In terms of BLUPs, on average,

LH123HT was the last inbred to reach anthesis (1547.66

GDU), and Mo17 was the last to reach silking (1555.13 GDU).

Across all environments, LH123HT was the tallest inbred

(191.35 cm), and inbred 2369 had the greatest ear height

(87.21 cm). Inbred 2369 had the greatest plot grain weight

(263.20 g), and PHG39 had the greatest kernel weight (0.31 g)

on average. C103 had the longest ears (167.25 mm), while

PB80 had the widest ears (41.60 mm) across environments.

Inbred 2369 had the greatest kernels per row (34.78), and

LH82 had the greatest kernel row number (19.54). Inbred 740

had the greatest kernel area (69.40 mm2), the longest ker-

nels (10.59 mm), and the widest kernels (8.65 mm). PHG39

had the thickest kernels (5.98 mm). The strongest positive

correlation among traits was observed between silking and

anthesis (Pearson r = .96). The strongest negative correlation

was observed between ear length and kernel weight (Pearson

r = −.70; Supplemental Figure S4).

Inbred line mean heritability estimates ranged from .95

for plot grain weight to .99 for kernel row number (Sup-

plemental Table S1). The environment term was significant

(P < .001) for each trait and explained between 4.46–51.24%

of the phenotypic variance. The genotype term was significant

(P < .001) for each trait as well and explained between 15.58–

62.76% of the phenotypic variance. For anthesis, silking, plant

height, ear height, plot grain weight, and kernel length, envi-

ronment explained the majority of the observed variation. For

ear length, ear width, kernel row number, kernel weight, ker-

nel area, and kernel width, genotype explained the majority

of the observed variation. The G × E interaction term was

significant (P < .001) for each trait and explained between

8.99 and 20.36% of phenotypic variance. It never explained

the majority of variation. The factor replication nested within

environment explained between 0.00–7.36% of the pheno-

typic variance, which was the smallest portion of phenotypic

variance among all sources of variation. This term was sig-

nificant (P < .01) for all traits except kernels per row, kernel

row number, and kernel thickness. Residual error accounted

for between 8.84–40.51% of the phenotypic variance and, in

the case of kernel thickness and kernels per row, it represented

the majority of observed phenotypic variance (Figure 1).

3.2 G × E interaction: sensitivity of traits

Trait sensitivity was quantified four ways: (i) the variance of

the slopes, (ii) the variance of the mean square errors (MSEs),

and (iii) MSE per se from the linear regression model, as well

as (iv) the Euclidean distances among points in the AMMI

biplot. The median r2 value (fit of the linear model) across

all inbreds for each trait was between .14 for kernel width

and .76 for anthesis (Supplemental Table S2). Based on linear

regression, anthesis had the lowest median MSE of all traits

(MSE = 0.202 and the smallest MSE variance, var = 0.009;

Figure 2b; Supplemental Table S3), while silking had the

smallest slope variance (var = 0.021; Figure 2a; Supplemen-

tal Table S4). Kernel weight had the greatest median MSE of

all traits (MSE = 0.470; Figure 2b; Supplemental Table S3).

https://github.com/cmfalcon/G2F_GxE_inbreds
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F I G U R E 1 Percent of phenotypic variance explained by each analysis of variance model term fitted as random effects for 14 quantitative

traits—two flowering traits (anthesis and silking), two height traits (plant and ear height), plot grain weight, four ear traits (ear length and width,

kernels per row, and kernel row number), and five kernel traits (kernel weight, area, length, width, and thickness)—measured on 31 inbred lines in 36

environments. Enviro, environment, Rep, replications

Kernel thickness had the largest MSE variance (var = 0.291;

Figure 2b; Supplemental Table S3) as well as the largest slope

variance (var = 0.318; Figure 2a; Supplemental Table S4).

For the AMMI analysis, PC1 and PC2 together repre-

sented between 32.5–52.4% of the variation observed for

each trait (Supplemental Table S5). In the AMMI biplots,

the median Euclidean distance between pairs of genotypes

was higher than the mean Euclidean distance between pairs

of environments for all traits except kernels per row and

kernel thickness, even in cases where the environment

explained more of the observed phenotypic variance. The

yield-component traits tended to show higher sensitivity to

G × E compared to morphological and flowering time traits

except for kernel row number, which had the lowest total

Euclidean distance (1.07). The flowering date traits showed

lower sensitivity to G × E measured as the total Euclidean

distance (1.11 for anthesis and 1.15 for silking) as they did for

the MSE and slope variance estimates of G × E sensitivity.

Kernel length had the greatest total Euclidean distance (1.57)

of any trait (Figure 3; Supplemental Table S6). Traits with a

larger percent variance explained by G × E tended to have a

larger total Euclidean distance (among genotypes plus among

environments; Pearson r = .83).

3.3 G × E interaction: discriminability of
environments

Depending on the trait, the GGE biplot explained 57.2–84.6%

of the total variation due to genotype and G × E (Supple-

mental Table S7). For each trait, the discriminability of

each environment was quantified based on the length of the

environment vector in GGE biplots, which corresponds to the

standard deviation of genotype means in the environment.

By this measure, the most discriminating environment

was MN2_14 with a median discriminability value of 4.36

across traits. The least discriminating environment was

NY1_14 with a median discriminability value of 1.05 across

traits (Figure 4a). For the most and least discriminating

environments for each trait, we report the rank of that

environment based on the mean value across genotypes to

contextualize the relationship of these environments to one

another (Supplemental Table S8). Environments with high

discriminability values for the yield-component traits tended

to have low discriminability for flowering date traits, although

this correlation was not significant (Figure 4b). Examining

the five most and five least discriminating environments

for each trait suggested that environments located in the

Midwest showed high discriminability for more traits than

environments to the West or East (Figure 5).

Comparing weather factors in the five least and five most

discriminating environments suggested that the weather dur-

ing silking was influential for more traits than the average

weather over the whole season or from planting to silking.

Over the whole season, no weather factors were significantly

different between the least and most discriminating environ-

ments for any trait. From planting to silking, seven compar-

isons among the eight weather factors and 14 traits showed

significant differences. Discriminability for anthesis and silk-

ing was influenced by the number of hours when tempera-

ture was greater than 25◦C and the number of hours when

temperature was greater than 22◦C. Discriminability for ker-

nel weight was influenced by median temperature, the num-

ber of hours when temperature was less than 22◦C, and pre-

cipitation. During silking, 15 comparisons were significantly

different between the least and most discriminating environ-

ments. Discriminability for flowering traits was influenced

by median and maximum temperature, the number of hours
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F I G U R E 2 Boxplots of (a) slope and (b) mean square error (MSE) values from linear regression analysis for the evaluation of 31 inbreds

across 36 environments for each of 14 traits, which were standardized by using the equation 𝑌𝑖𝑗𝑘 standardized
= [𝑌𝑖𝑗𝑘 − 𝑚𝑒𝑎𝑛(𝑌 )]∕𝑠𝑑(𝑌 ) where Yijk was the

response variable of the kth genotype (G) in the jth replication (r) nested in the ith environment (E) and Y was the response of all genotypes in all

replications in all environments. The set of 31 inbreds was used to determine the environmental index used in the regression. The y-axis was

truncated to display a less compressed view of the boxplots. As a result, several outlier data points are not included: kernel thickness, MSE = 1.96

and MSE = 2.66; ear width, MSE = 1.56; kernels per row, MSE = 1.45

when temperature was greater than 30, 25, and 22◦C and

less than 22◦C, and precipitation during silking. Discrim-

inability for ear width was influenced by minimum temper-

ature and the number of hours when temperature was less

than 22◦C. Discriminability for kernel row number, kernels

per row, kernel area, and kernel width was influenced by

the number of hours when temperature was less than 22◦C

(Figure 6).

3.4 G × E interaction: stability of genotypes

The stability of each genotype was quantified in terms of Type

II stability and MSE from the linear regression model, and

as the distance from the AEC abscissa in the GGE analysis.

The values for these different stability parameters showed a

wide range of variation. Slope values ranged from −0.55–

2.20 across genotypes and traits. Likewise, MSE ranged from
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F I G U R E 3 Stacked barplot of median Euclidean distance between all pairs of genotypes (red) and between all pairs of environments (blue)

from additive main effects and multiplicative interactions Principle Component 1 vs. Principle Component 2 biplots for each of 14 traits, which were

standardized by using the equation 𝑌𝑖𝑗𝑘 standardized
= [𝑌𝑖𝑗𝑘 − 𝑚𝑒𝑎𝑛(𝑌 )]∕𝑠𝑑(𝑌 ) where Yijk was the response variable of the kth genotype (G) in the jth

replication (r) nested in the ith environment (E) and Y was the response of all genotypes in all replications in all environments. The set of genotypes

includes 31 maize inbred lines evaluated across 36 environments. Along the x-axis, traits are sorted by the total Euclidean distance (i.e., among

genotypes plus among environments)

0.06–2.66, and the GGE stability value ranged from 0–5.86.

As the GGE stability is most appropriately interpreted in rela-

tion to the genotypes’ mean performance values, we have

reported the rank (based on mean performance value) for the

most and least stable (based on GGE stability) genotypes to

contextualize this measure of stability (Supplemental Table

S9). While more patterns of stability versus mean perfor-

mance show up among the traits in this study than we can con-

cisely identify here, we recognize that GGE stability is more

meaningful in situations where the genotypes exhibit simi-

lar mean performance. Each of these quantifications repre-

sent different concepts of stability. In fact, the Spearman rank

correlations between these three types of stability (defined as

median stability across all traits for each genotype) were all

low (Type II and MSE: ρ = .19; Type II and GGE: ρ = .31;

MSE and GGE: ρ = .41) and nonsignificant at the α = .05

level. Type II and GGE stability are similar in that they indi-

cate a genotype that has ranked consistently across environ-

ments, but they were not strongly correlated in our study.

Type II stability and MSE were each significantly corre-

lated with the BLUP values of genotype performance for four

traits. Pearson r-values ranged from −0.49–0.52 for the cor-

relation of the BLUP values and Type II stability and from

−0.41–0.77 for the correlation of the BLUP values and MSE.

The correlation of Type II stability and the BLUP values

is explained by the fact that Type II stability is the direc-

tional responsiveness of the genotype to the environmental

index. The GGE stability showed significant correlation with

the BLUP values for only one trait, kernel thickness (Pear-

son r = .42; Table 3). These results suggest that performance

and sensitivity to differential environmental influences are not

correlated for most traits.

Based on the slope of each genotype in the linear regression

model (Supplemental Table S10), PHN82 exhibited the high-

est Type II stability (mean slope value across traits = 1.00),

and PHG47 exhibited the lowest (mean slope value across

traits = 0.59). Based on the MSE from the linear regression

model (Supplemental Table S11), PHG39 was the least stable

genotype (mean MSE value across traits = 0.61), and LH198

was the most stable (mean MSE value across traits = 0.23)

across all traits. Using the GGE biplot analysis to quantify

stability, C103 was the most stable genotype (median stabil-

ity value across traits = 0.43), and B37 was the least stable

genotype (median stability value across traits = 1.46) across

all traits (Figure 7a). Stability ranking differed for each trait

for all of these methods. Even within types of traits (i.e., flow-

ering, height, or yield-component traits), correlations of sta-

bility rankings were nonsignificant or weak (Figure 7b; Sup-

plemental Figure S5). When considering kernel thickness,

the trait that showed the greatest variance for both slope and

MSE (Supplemental Tables S4 and S5), LH74 line showed

the highest (slope = 1.02) and W117 showed the lowest

(slope = −0.32) Type II stability (Supplemental Table S10),

whereas PHB47 was the most stable (MSE = 0.09) and B37

was the least stable (MSE = 2.66) based on MSE values (Sup-

plemental Table S11). For GGE analysis, ear width showed

the most variance in stability value (Supplemental Table S12),

PHZ51 line was the most stable (stability value = 0.04), and

B37 was the least stable (stability value = 5.86) in this case

(Supplemental Table S13).
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F I G U R E 4 Each environment’s discriminating power was quantified based on the “discriminating power vs. representativeness” view of the

genotype main effects and genotype × environment interaction (GGE) biplot. (a) GGE discriminability of 14 traits (which were standardized using

the equation where Yijk was the response variable of the kth genotype (G) in the jth replication (r) nested in the ith environment (E) and Y was the

response of all genotypes in all replications in all environments) evaluated for 31 inbreds for across the 36 environments used in this study ordered by

the median discriminability. Lower discriminability values (x-axis) indicate lower discriminability while higher values indicate greater

discriminability. (b) Rank correlations among discriminability values for each trait. The symbol “ × ” marks nonsignificant (α = .05) correlations

F I G U R E 5 Number of traits out of 14 evaluated

for which an environment was among the five least

(below the x-axis) or five most (above the x-axis)

discriminating environments. This study included 31

maize inbred lines evaluated across 36 environments in

the United States. Environments are arranged along the

x-axis by longitude from west to east with Midwest

environments (locations with longitude between −85◦

and −95◦: Iowa, Illinois, Indiana, Minnesota, Montana,

and Wisconsin) indicated in blue and other

environments (West, longitude west of −95◦, and East,

longitude east of −85◦:locations in Delaware, Georgia,

Kansas, North Carolina, Nebraska, New York,

Pennsylvania, South Dakota, and Texas) indicated in

red. Environments not shown were not among the five

least or most discriminating environments for any trait
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F I G U R E 6 Summary of significant differences in weather

factors (minimum, median, and maximum temperature; number of

hours when temperature was less than 22◦C or was greater than 22, 25,

or 30◦C; and precipitation) between the five least and five most

discriminating environments for each of 14 traits evaluated. The

evaluation included 36 different environments in the United States.

Statistical significance was determined by a t-test (P < .05). Bars are

placed above the x-axis where the weather factor was greater in the

most discriminating environment or below the x-axis where the weather

factor was greater in the least discriminating environments. Height of

the bars illustrates the number of traits significantly greater in the most

or least discriminating environment for each weather factor

Having observed that the Midwest locations (as defined by

longitude) tended to show higher discriminability, we exam-

ined the stability of inbred performance in the Midwest ver-

sus other regions (West and East). Type II stability was sig-

nificantly lower in the Midwest for plant and ear height as

well as plot grain weight and ear length and was significantly

higher in the Midwest for kernel row number. With signifi-

cantly lower MSE, the inbreds were more stable in the Mid-

west for ear length, kernel row number, kernel weight, kernel

area, kernel length, and kernel width. For GGE stability, the

inbreds were significantly more stable in the Midwest for plant

height, kernel row number, and kernel width. However, for

anthesis, silking, and ear length, the inbreds were less stable

in the Midwest (Figure 8). The effect of latitude on stability

was also examined, but no pattern was identified.

T A B L E 3 Significant (P < .05) Pearson correlations between

best linear unbiased prediction (BLUP) values for 31 inbreds evaluated

across 36 environments and stability parameters for each trait evaluated.

Nonsignificant correlations indicated by “ns.”

Trait Type IIa MSEb GGE
Anthesis ns ns ns

Silking ns ns ns

Plant height ns ns ns

Ear height −0.44 ns ns

Plot grain weight −0.49 ns ns

Ear length ns ns ns

Ear width ns ns ns

Kernels per row ns −0.41 ns

Kernel row number 0.52 0.48 ns

Kernel weight ns 0.54 ns

Kernel area ns ns ns

Kernel length −0.37 ns ns

Kernel width ns ns ns

Kernel thickness ns 0.77 0.42

aType II stability calculated as the absolute value of slope – 1
bMSE, mean square error; GGE, genotype main effect and genotype× environment

interaction.

3.5 Comparing stability among categories of
germplasm

Comparing the NSS to SSS inbred types, silking showed a sig-

nificant difference for Type II stability (P < 0.05) with the SSS

inbreds being more stable (slope closer to 1). No trait showed

a significant difference for MSE or for the GGE quantification

of stability. For the comparison of public and ex-PVP geno-

types, kernel width showed a significant difference in Type II

stability (P < 0.05), with the public inbreds being more sta-

ble (slope closer to 1). Ear length showed a significant dif-

ference for MSE with the ex-PVP inbreds having lower MSE

(greater Type III stability). For the GGE quantification of sta-

bility, no trait showed a significant difference (Supplemental

Table S14).

4 DISCUSSION

4.1 Presence of G × E interaction

In this study, we measured 14 traits for 31 genotypes in 36

environments. Inbred line mean heritability estimates in this

study were very high, likely due to the fact that data were

collected from many environments. By studying inbreds, we

were able to maximize the diversity that we considered and

more easily interpret the G × E patterns since we were not

looking at the average performance of two inbred parents

via hybrid genotypes. Genotype × environment interaction
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F I G U R E 7 Each genotype’s stability was quantified based on the “mean vs. stability” view of the genotype main effects and genotype ×
environment interaction (GGE) biplot. (a) GGE stability of the 14 traits used in this study, which were standardized using the equation

𝑌𝑖𝑗𝑘 standardized
= [𝑌𝑖𝑗𝑘 − 𝑚𝑒𝑎𝑛(𝑌 )]∕𝑠𝑑(𝑌 ) where Yijk was the response variable of the kth genotype (G) in the jth replication (r) nested in the ith

environment (E) and Y was the response of all genotypes in all replication in all environments, for each of the 31 genotypes in this study ordered by

median stability. Lower stability values (x-axis) indicate greater stability while larger stability values indicate lower stability. (b) Rank correlation

among stability values for each trait

was present at some level for all traits, with the percent vari-

ance explained by this factor ranging between 8.99–20.36%.

The flowering date traits, anthesis and silking, exhibited a

smaller effect of G × E, likely because of the more impor-

tant main effect of environment for these traits. Plant height

and ear height exhibited a low-level G × E effect with a bal-

ance of environment, genotype, and G × E effects on these

traits. Kernel row number also exhibited a low level of G × E

effect with a more prevalent effect of genotype. The remain-

ing yield-component traits showed higher G × E effects with

varying levels of genotype and environment effects. The pro-

nounced effect of environment for many of these traits may

be due to the large number and geographic spread of envi-

ronments in this study. Similarly, an experiment of 835 maize

hybrids grown at 21 locations found that the wide range of cli-

matic conditions across the environments resulted in a large

proportion of variance, between 42–74%, being explained by

the environment term (Gage et al., 2017). The small effect of

replications is favorable as it indicates consistent performance

across the two replications in each environment. The residual

error ranged widely with low values for the flowering date

traits and higher values for the height and yield-component

traits. This may be due to the variable goodness of fit of

the linear model for different traits as well as the accuracy

and precision of measurement for each trait. Residual error

represented the majority of observed phenotypic variance

for kernel thickness and kernels per row. Such large resid-

ual errors for these traits may be due to low accuracy in the

method of measuring kernel thickness (and therefore kernels

per row since it is derived from kernel thickness) as well as

the tendency of inbreds to exhibit more variability due to poor

seed fill. Importantly, however, the relative effects of each

model factor (environment, genotype, G × E, and replicates

nested within environment) depends on the environments and
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F I G U R E 8 Boxplots of Type II stability (absolute value of slope – 1), mean square error (MSE), and the stability value calculated from the

genotype main effects and genotype × environment interaction (GGE) biplot for 14 traits evaluated in 31 maize inbred lines across 36 environments

in the United States. t-tests were used to identify significant differences in the stability values in the Midwest environments (locations with longitude

between −85◦ and −95◦: Iowa, Illinois, Indiana, Minnesota, Montana, and Wisconsin), which are indicated in blue, versus the West and East

environments (West, longitude west of −95◦; East, longitude east of −85◦:locations in Delaware, Georgia, Kansas, North Carolina, Nebraska, New

York, Pennsylvania, South Dakota, and Texas), which are indicated in red. Significance level for the t-test is shown below each pair of boxes: ns,

nonsignificant, where P > 0.05; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001
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genotypes examined and will vary in other experiments. Over-

all, by studying several different types of traits in a large num-

ber of environments, we were able to capture the variable

effect of G × E.

4.2 Sensitivity of traits to G × E

Yield-component traits tended to show greater G × E sensi-

tivity than flowering or height traits. The lower G × E sensi-

tivity of flowering and height traits may owe to their higher

heritability (Buckler et al., 2009; Peiffer et al., 2014; Wang,

Yao, Zhang, & Zheng, 2006). Of the yield-component traits,

kernel row number was the exception as it exhibited lower

values for the various measures of G × E sensitivity. This is

likely because of the large genetic effects for this trait, both in

our study and in previous work (Hung et al., 2012). Poten-

tial kernel row number is determined earlier in the plant’s

development, but the realized kernel row number is influenced

by stress during the silking period, which can lead to ker-

nel abortion (Bänziger, Edmeades, & Lafitte, 2002; Below,

Cazetta, & Seebauer, 2000; Gallais & Coque, 2005; Jacobs

& Pearson, 1991; Reed, Singletary, Schussler, Williamson,

& Christy, 1988; Uhart & Andrade, 1995a; 1995b). The low

G × E sensitivity for kernel row number in our study may sug-

gest that the trials had consistent levels of stress (which was

likely low considering we did not aim to induce stress). Over-

all, given these results on trait sensitivity to G × E, including

detailed ear and kernel yield component traits in future stud-

ies of G × E should improve detection of environmental stress

and G × E.

4.3 Discriminability of environments

Different groups of environments were quantified as more dis-

criminating depending on the specific trait in question. For

example, MN2_14 was the most discriminating environment

based on the median GGE discriminability value across traits.

However, while it was the third most discriminating environ-

ment for the yield-component traits, it was ranked 16th for the

remaining traits (anthesis, silking, and plant and ear height). In

cotton, environment discriminability and representativeness

were assessed using GGE analysis and biplots for two traits

(Blanche & Myers, 2006). The authors found that different

environments were the most desirable depending on the trait.

Their approach to reconciling this issue was to determine the

most desirable location for an index trait comprising weighted

values of the two traits they considered. A study in sugar-

cane also used GGE analysis and biplots to study environment

discriminability and representativeness for three traits (Glaz

& Kang, 2008). Here, the most discriminating environments

overlapped across traits (cane yield, sucrose yield, and total

recoverable sucrose), possibly because of the relatedness of

these traits as sucrose yield is calculated from cane yield and

total recoverable sucrose.

Thus, as has been noted for other crops, no single environ-

ment can be described as the most discriminating, as this char-

acteristic differs by trait. Related traits such as those in the

sugarcane study or the yield-components in this study show

more similarity in discriminability patterns across environ-

ments. Since the option of testing at the most desirable envi-

ronment for each separate trait is usually limited by resources,

breeders may wish to choose the most discriminating test

environments for the most important trait or based on the

results for an index that combines traits of interest. Further

research is needed to determine the utility of indices in this

context and how to weight traits in those indices. Another way

that future research might frame the practical utility of dis-

criminating environments is to consider whether selection in

non-target environments with high discriminability translates

to gains in a target environment with low discriminability.

4.4 Differences between least and most
discriminating environments

Midwest locations (based on longitude) tended to be in the

top five most discriminating environments for more traits than

environments in the West or East, while environments in the

West and East tended to be among the five least discriminat-

ing environments more often. Twenty-six of the 31 inbreds

in this study were originally developed in the Midwest. In

future research, genotypes from more varied origins should

be involved to investigate the patterns of discriminability for

germplasm that was not developed in the region of the envi-

ronments studied.

Similarly, a study of discriminability in sugarcane observed

that organic soil locations were more discriminating than the

sand soil environment with regard to genotypes that had been

developed by testing mostly in organic soil locations (Glaz

& Kang, 2008). These results suggest that environments are

more discriminating of lines that are well-adapted to them.

Stated differently, locations beyond the target set of envi-

ronments for a set of lines may exhibit lower discriminat-

ing power among them. Practically speaking, this observation

may factor into the results of response to selection for tropical-

to-temperate phenological adaptation in maize (Teixeira et al.,

2015). In that study, the authors observed greater gain from

selection for flowering time adaptation in the original loca-

tion of selection (Iowa) than other locations where the multi-

generational population was evaluated. The more general con-

clusion that selecting in a particular environment is the best

way to achieve adaptation to that environment has been fre-

quently described in the literature on correlated response to

selection (Simmonds, 1991).
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Weather during silking was significantly different between

the least and most discriminating environments in more cases

than weather throughout the season or weather from planting

to silking. In particular, weather factors during silking were

significantly associated with the discriminability of environ-

ments for ear size, kernel number, and kernel size traits. These

results are consistent with previous findings that stress dur-

ing the period bracketing silking intensified ovule, kernel,

and ear abortion by influencing the rate of dry matter accu-

mulation and partitioning (Early, McIlrath, Seif, & Hageman,

1967; Echarte & Tollenaar, 2006; Echarte, Andrade, Vega, &

Tollenaar, 2004; Edmeades & Daynard, 1979; Grant, Jackson,

Kiniry, & Arkin, 1989; Jacobs & Pearson, 1991; Lee & Tol-

lenaar, 2007; Nafziger, 2009; Prine, 1971; Reed et al., 1988;

Tollenaar, Dwyer, & Stewart, 1992; Uhart & Andrade, 1995a;

1995b). By affecting each genotype’s ability to achieve its

potential number of ovules and kernels, greater stress during

this influential period likely diminishes the discriminability

among genotypes in that environment.

4.5 Stability of genotypes

Stability of genotypes varied by trait, showing little dis-

cernible pattern, even within categories of related traits. Simi-

larly, quality protein maize studies observed variation in slope

and mean sum of square of deviations from regression across

several traits (Pixley & Bjarnason, 2002; Zaidi et al., 2008).

For instance, Pixley and Bjarnason (2002) observed that the

open-pollinated cultivars were least responsive (of the culti-

var types studied) to environmental potential for grain yield,

but were also the most responsive for endosperm modifica-

tion score. However, these studies suggested more similarity

in stability parameter values among related traits. For exam-

ple, tryptophan and lysine in protein both had low slope val-

ues compared to grain yield, protein in grain, tryptophan in

grain, and lysine in grain (Zaidi et al., 2008). Taken together,

these observations suggest that breeding endeavors for differ-

ent traits need to assess G × E for each trait independently

rather than assuming that a genotype that is stable for one

trait will also be stable for others. Investigating the stability

for different traits is also useful since the desirability of sta-

bility depends on the trait in question. For example, to achieve

ideal quality protein maize cultivars, Pixley and Bjarnason

(2002) sought lines that would respond favorably to environ-

ment and have high yield, protein content, and protein qual-

ity in all environments (β𝑖 = 1, high mean) while also main-

taining low endosperm modification score even at unfavorable

sites (β𝑖 < 1, low mean).

In most cases, performance was not correlated with any

measure of stability. A previous study of 23 phenotypes in

maize showed that candidate genes for mean performance and

for linear and nonlinear plasticity (i.e., slope and MSE from

the Finley–Wilkinson regression) were structurally and func-

tionally distinct (Kusmec, Srinivasan, Nettleton, & Schnable,

2017). If different genetic regions control trait performance

as opposed to trait stability, it may be easier to exploit G ×
E while also breeding for improved performance. Results for

which genotypes were most stable for each trait differed by the

definition of stability being considered. In practice, breeders

would focus on whichever type of stability was most impor-

tant for their specific goals. For instance, they would focus on

type II stability if breeding for a wide area, but MSE would

be more important in breeding for a more localized region.

We found that stability was significantly different in Mid-

west (more discriminating) versus non-Midwest (less discrim-

inating) locations for several traits. While we would have

expected to see greater stability in the Midwest locations

where most of the inbreds were originally developed, Type II

stability was actually lower for plant height, ear height, plot

grain weight, and ear length. The greater deviation from a

slope of one for these traits may signal that while inbreds were

not stable, they were more responsive to the best environments

for these traits. For plant height, ear height, and plot grain

weight, the median slope value across genotypes was greater

than one, which indicates a better response to favorable envi-

ronments. Type III stability in terms of MSE performed as we

would have expected with greater stability for several kernel

number and kernel size traits in the Midwest locations. For

GGE stability, several traits—plant height, kernel row num-

ber, and kernel width—were more stable in the Midwest, as

expected. However, the two flowering traits, anthesis and silk-

ing, were less stable in the Midwest. This lower stability may

be due to the inbreds’ wider range of flowering dates in envi-

ronments where they are adapted in comparison to a flatter

response in less suitable environments. This result reinforces

our suggestion that future studies match the germplasm’s ori-

gins to the target population of environments. Future studies

should also consider how hybrids’ stability patterns may dif-

fer from those found in this study of inbreds since inbreds are

developed for their performance in hybrids.

For most traits, stability was not significantly different

between NSS and SSS inbreds or between the ex-PVP and

public inbreds. We would have expected the SSS inbreds to

show greater stability for yield-component traits, owing to

their history of being used as female parents. However, the

SSS inbreds did not show better stability (Type II, MSE, or

GGE) for any yield-component trait. We expected the ex-PVP

inbreds to exhibit better stability due to their higher degree

of selectness in comparison to the public inbreds. However,

only two comparisons of stability were significantly different

between these groups of inbreds. This result pointed out that

while these inbreds are more highly selected, they were not

selected for stability or performance as inbreds but as hybrid

parents. As such, future research should investigate the per-

formance and stability of hybrids created from these inbreds.
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5 CONCLUSIONS

In this experiment, we focused on questions of how to improve

future studies of G × E, especially in terms of which traits are

most informative. Given our results, future studies of G × E

should include yield-component traits, which were more sen-

sitive to G × E relative to flowering date and height traits.

The discriminating power of environments varied by trait, so

the utility of determining discriminability for an index trait

should be investigated. Weather factors during the silking

period were significantly different between the most and least

discriminating environments more often than weather across

the season or during the period from planting to silking. These

differences may aid in identifying environments that, over sea-

sons, tend to have appropriate weather patterns to achieve

maximum discriminability. We found that the most discrimi-

nating environments were in the Midwest for more traits, and

that stability was higher in the Midwest environments as well.

Most of the inbreds we tested originated in the Midwest. Thus,

we propose that future work be done to investigate whether

these patterns are different when germplasm from more var-

ied origins are involved. We did not observe the expected dif-

ferences in stability between SSS versus NSS inbreds and in

public versus ex-PVP inbreds, highlighting the importance of

considering hybrid performance and stability in future G × E

studies.
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