Armen R. Kemanian, Ph.D.

  • Associate Professor of Production Systems and Modeling
Armen R. Kemanian, Ph.D.
247 Agricultural Sciences and Industries Building
University Park, PA 16802
Work Phone: 814-863-9852

Areas of Expertise

  • Agroecosystems
  • Soil Carbon and Nitrogen Cycling
  • Hydrologic and Nutrient Cycling Modeling
  • Environmental Biophysics
  • Plant Ecophysiology


  1. Ph.D., Biological Systems Engineering, Washington State University, 2003
  2. B.S., Facultad de Agronomía, Universidad de la República, Uruguay, 1997

Responsibilities and Interests

Dr. Armen Kemanian (Ph.D., Washington State University) interests are to understand and manage processes in agricultural and natural ecosystems. Kemanian’s research integrates multiple scales, from the controls of carbon and nitrogen cycling in soils and the controls of plant water uptake and competition for resources in plant communities, to system’s level research and decision support tools based on models and applied at farm and landscape scales. Kemanian’s research program links fundamental research with societal concerns regarding food production, climate change, and the preservation of environmental integrity.


  • 75% Research
  • 25% Teaching



  1. Camargo, G.G..T and A.R. Kemanian, 2016. Six crop models differ in their simulation of water uptake. Agricultural and Forest Meteorology 220, 116-129.
  2. Ernst, O.R, A.R. Kemanian, S.R. Mazzilli, M. Cadenazzi, and S. Dogliotti, 2016. Depressed attainable wheat yields under continuous annual no-till agriculture suggest declining soil productivity. Field Crops Research 186, 107-116.
  3. Mazzilli, S.R., A.R. Kemanian, O.R. Ernst, R.B. Jackson, and G. Piñeiro, 2015. Greater humification of belowground than aboveground biomass carbon into particulate soil organic matter in no-till corn and soybean crops. Soil Biology and Biochemistry 85, 22-30.
  1. White, C.M., A.R. Kemanian, and J.P. Kaye, 2014. Implications of carbon saturation model structure for simulated nitrogen mineralization dynamics. Biogeosciences 11(23), 6725-6738.
  2. Kumudini, S., F.H. Andrade, K.J. Boote, G.A. Brown, K.A. Dzotsi, G.O. Edmeades, T. Gocken, M. Goodwin, A.L. Halter, G.L. Hammer, J.L. Hatfield, J.W. Jones; A.R. Kemanian, S.-H. Kim, J. Kiniry, J.I. Lizaso, C. Nendel, R.L. Nielsen, B. Parent, C.O. Stöckle, F. Tardieu, P.R. Thomison, D.J. Timlin, T.J. Vyn; D. Wallach, H.S. Yang, and M. Tollenaar, 2014. Predicting maize phenology: Intercomparison of functions for developmental response to temperature. Agronomy Journal. doi:10.2134/agronj14.0200
  3. Timlin, D. J., D.H. Fleisher, A.R. Kemanian and V.R. Reddy, 2014. Plant density and leaf area index effects on the distribution of light transmittance to the soil surface in maize. Agronomy Journal 106,1–10.
  4. Mazzilli S.R., A.R. Kemanian, O.R. Ernst, R.B. Jackson, G. Piñeiro. 2014. Priming of soil organic carbon decomposition induced by corn compared to soybean crops. Soil Biology Biochemistry 75, 273-281.
  5. Bassu, S, N. Brisson, J-L. Durand, K. Boote, J. Lizaso, J.W. Jones, C. Rosenzweig, A.C. Ruane, M. Adam, C. Baron, B. Basso, C. Biernath, H. Boogaard, S. Conijn, M. Corbeels, D. Deryng, G. DiSanctis, S. Gayler, P. Grassini, J. Hatfield, S. Hoek, C. Izaurralde, R. Jongschaap, A.R. Kemanian, C.K. Kersebaum, N.S. Kumar, D. Makowski, C. Müller, C. Nendel, E. Priesack, M.V. Pravia, S-H. Kim, F. Sau, I. Shcherbak, F. Tao, E. Teixeira, D. Timlin, K. Waha, 2014. How do various maize crop models vary in their responses to climate change factors? Global Change Biology.10.1111/gcb.12520
  6. Schipanski, M.E., M. Barbercheck, M.R. Douglas, D.M. Finney, K. Haider, J.P. Kaye, A.R. Kemanian, D.A. Mortensen, M.R. Ryan, J. Tooker and C. White. 2014. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agricultural Systems 125, 12-22.
  7. Meki, M.N., A.R. Kemanian, S.R. Potter, J.M. Blumenthal, J.R. Williams, and T. Gerik, 2013. Cropping system effect on sorghum grain yield, soil organic carbon, and global warming potential in central and south Texas. Agricultural Systems 117, 19-29.
  8. Olson, S.N., K. Ritter, W. Rooney, A.R. Kemanian , B. A. McCarl, Y. Zhang, S. Hall, and J. Mullet. 2012. Energy Sorghum: A genetic model for C4 grass bioenergy crops. Biofuels, Bioproducts & Biorefining 6, 640-655.
  9. Stöckle, C.O., S. Higgins, A.R. Kemanian, R.L. Nelson, D.R. Huggins, J.P. Marcos, and H. Collins, 2012. Carbon storage and nitrous oxide emissions of cropping systems in eastern Washington: A simulation study. J. of Soil and Water Conservation 67, 365-377.
  10. Kemanian, A.R., S. Julich, V.S. Manoranjan, and J.R. Arnold, 2011. Integrating carbon, nitrogen, and phosphorus cycling in the watershed model SWAT: theory and model testing. Ecological Modelling 222, 1913–1921.
  11. Kemanian, A.R., and C.O. Stöckle. 2010. C-Farm: A simple model to estimate the carbon balance of soil profiles. European J. Agronomy 32, 22–29.
  12. Wang, X., P.W. Gassman, J. R. Williams, S. Potter, A.R. Kemanian. 2008. Modeling the impacts of soil management practices on runoff, sediment yield, maize productivity, and soil organic carbon using APEX. Soil & Tillage Research 101, 78–88.
  13. Kiniry, J.R., J.D. MacDonald, A.R. Kemanian, B. Watson, and G. Putz. 2008. Plant growth simulation for landscape scale hydrologic modeling. Journal of Hydrological Sciences 53, 1030–1042.
  14. Kemanian, A.R., C.O. Stöckle, D.R. Huggins, and L.M. Viega. 2007. A Simple Method to Estimate Harvest Index in Grain Crops. Field Crops Research 103, 208–216.
  15. Page, E.R., A.R. Kemanian, E.P. Fuerst, and R.S. Gallagher. 2007. Spatially Variable Patterns of Wild Oat Emergence in Eastern Washington. Crop Protection, 26:232–236.
  16. Kemanian, A.R., C.O. Stöckle, and D.R. Huggins. 2007. Estimating Grain and Straw Nitrogen Concentration in Grain Crops Based on Aboveground Nitrogen Concentration and Harvest Index. Agronomy Journal 99, 158–167.
  17. Page, E.R., R.S. Gallagher, A.R. Kemanian, and H. Zhang. 2006. Modeling Site-Specific Wildoat (Avena fatua) Emergence Across a Variable Landscape. Weed Science 54, 838–846.
  18. Kemanian, A.R. C.O. Stöckle, and D.R. Huggins. 2005. Barley Transpiration-Use Efficiency. Agricultural and Forest Meteorology 130, 1–11.
  19. Kemanian, A.R. C.O. Stöckle, and D.R. Huggins. 2004. Variability of Barley Radiation-Use Efficiency. Crop Science 44, 1162–1173.
  20. Scott, M.J., L.W. Vail, J.A. Jaksch, C.O. Stöckle, and A.R. Kemanian. 2004. Water Exchanges: Tools to Beat El Niño Climate Variability in Irrigated Agriculture. J. of the American Water Resources Association 40(1), 15–31.

Book Chapters

  1. Stöckle, C.O. and A.R. Kemanian, 2009. Crop radiation capture and use efficiency: A framework for crop growth analysis. In Crop Physiology (V. Sadras and D. Calderini Eds). Academic Press, Elsevier Inc. p 145–170.
  2. Kremer, C., C.O. Stöckle, A.R. Kemanian, and T. Howell. 2008. A reference canopy transpiration and photosynthesis model for the evaluation of simple models of crop productivity. In Response of crops to limited water (L.R. Ahuja, V.R. Reddy, S.A. Saseendran, Q. Yu Eds) Advances in Agricultural Systems Modeling 1. pp 165–190.
  3. Stöckle, C.O. and A.R. Kemanian. 2008. On the use of radiation- and water-use efficiency for biomass production models. In Response of crops to limited water (L.R. Ahuja, V.R. Reddy, S.A. Saseendran, Q. Yu Eds) Advances in Agricultural Systems Modeling 1. pp 39–58.